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Preface

Banach algebras are Banach spaces equipped with a continuous multiplica-
tion. In rough terms, there are three types of them: algebras of bounded linear
operators on Banach spaces with composition and the operator norm, alge-
bras consisting of bounded continuous functions on topological spaces with
pointwise product and the uniform norm, and algebras of integrable functions
on locally compact groups with convolution as multiplication. These all play
a key role in modern analysis. Much of operator theory is best approached
from a Banach algebra point of view and many questions in complex analysis
(such as approximation by polynomials or rational functions in specific do-
mains) are best understood within the framework of Banach algebras. Also,
the study of a locally compact Abelian group is closely related to the study
of the group algebra L1(G).

There exist a rich literature and excellent texts on each single class of
Banach algebras, notably on uniform algebras and on operator algebras. This
work is intended as a textbook which provides a thorough introduction to
the theory of commutative Banach algebras and stresses the applications to
commutative harmonic analysis while also touching on uniform algebras. In
this sense and purpose the book resembles Larsen’s classical text [75] which
shares many themes and has been a valuable resource. However, for advanced
graduate students and researchers I have covered several topics which have
not been published in books before, including some journal articles.

The reader is expected to have some basic knowledge of functional analysis,
point set topology, complex analysis, measure theory, and locally compact
groups. However, many of the prerequisites are collected (without proofs) in
the appendix. Here the reader may also find (including proofs) some facts
about convolution of functions on locally compact groups, the Pontryagin
duality theorem and some of its consequences, and a description of the closed
sets in the coset ring of an Abelian topological group.

The book is divided into five chapters, the contents of which can be
described as follows. The first chapter introduces the basic concepts and
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constructions and provides a comprehensive treatment of the spectrum of
a Banach algebra element.

Chapter 2 begins with Gelfand’s fundamental theorem on representing a
commutative Banach algebra A as an algebra of continuous functions on a
locally compact Hausdorff space, the structure space Δ(A) of A, which is de-
fined to be the set of all homomorphisms from A onto C, equipped with the
w∗-topology. This Gelfand homomorphism turns out to be an isometric iso-
morphism onto C0(Δ(A)) if and only if A is a commutative C∗-algebra. Appli-
cations of this basic result include proofs for the existence of the Stone-Čech
compactification of a completely regular topological space and of the Bohr
compactification of a locally compact Abelian group. The structure space of a
finitely generated algebra identifies canonically with the joint spectrum of the
set of generators and this leads to a description of the Gelfand representation
of several uniform algebras, such as the closure of algebras of polynomial and
of rational functions on compact subsets of Cn. Following our intention to em-
phasize the connection with commutative harmonic analysis, we extensively
study the Gelfand representation of algebras associated with locally compact
groups. This concerns, in the first place, the convolution algebra L1(G) of
integrable functions on a locally compact Abelian group, but also weighted
algebras L1(G, ω) and Fourier algebras. Chapter 2 concludes with determining
the structure spaces of tensor products of two commutative Banach algebras
and a discussion of semisimplicity of the projective tensor product.

In Chapter 3 we focus on some important problems which evolve from
the Gelfand representation theory and concern the structure space Δ(A) and
the structure of A itself. The new tools required are holomorphic functional
calculi for Banach algebra elements. These are developed in Section 3.1 and
subsequently applied to study the topological group of invertible elements of
a unital commutative Banach algebra A and the problem of which elements
of Δ(A) extend to elements of Δ(B) for any commutative Banach algebra B
containing A as a closed subalgebra. This latter question is linked with the
Shilov boundary which we investigate thoroughly. One of the major highlights
in the theory of commutative Banach algebras is Shilov’s idempotent theo-
rem. This rests on the multivariable holomorphic functional calculus and is
established in Section 3.5, followed by several applications that illustrate the
power of the idempotent theorem.

The concept of regularity and its role in ideal theory is the main subject
of Chapter 4. The relevance of regularity is due to the fact that it is equi-
valent to coincidence of the Gelfand topology and the hull-kernel topology on
Δ(A). We show the existence of a greatest regular subalgebra of any commu-
tative Banach algebra and study permanence properties of regularity. One of
the most profound results in commutative harmonic analysis is regularity of
the group algebra L1(G). To prove this, we have chosen an approach which
is based on the Gelfand theory of commutative C∗-algebras. Recently, cer-
tain properties related to, but weaker than, regularity have been investigated.
We give a detailed account and comparison of these so-called spectral exten-
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sion properties and the unique uniform norm property. Finally, we establish
Domar’s result which asserts that L1(G, ω) is regular whenever the weight ω
is nonquasianalytic.

The last chapter is devoted to ideal theory of regular semisimple commu-
tative Banach algebras and to spectral synthesis problems in particular. The
basic notions are that of a spectral set and of a Ditkin set in Δ(A). It is cus-
tomary to say that spectral synthesis holds for the algebra A if every closed
subset of Δ(A) is a spectral set (equivalently, every closed ideal of A is the
intersection of the maximal ideals containing it). In Section 5.2 we present a
number of results on generating spectral sets and Ditkin sets, some of which
cannot be found elsewhere in this generality. Subsequently, these results are
applied to L1(G). In this context we point out that a famous theorem of
Malliavin states that spectral synthesis fails to hold for L1(G) whenever G is
a noncompact locally compact Abelian group. We also present a complete de-
scription of all the closed ideals in L1(G) with bounded approximate identities.
Spectral synthesis also fails for the algebra Cn[0, 1] of n-times continuously
differentiable functions on the interval [0, 1] and even for a certain algebra
with discrete structure space, the Mirkil algebra. Both of these algebras are
discussed in detail: Cn[0, 1] because it nevertheless admits a satisfactory ideal
structure and the Mirkil algebra because it serves as a counterexample to
several conjectures in spectral synthesis.

Each chapter is accompanied by an extensive set of exercises, ranging from
simple and straightforward applications of concepts and results developed in
the chapter in question to more sophisticated supplements to the theory. These
exercises add numerous examples to those already given in the text. In several
cases hints are provided, and the reader is strongly encouraged to solve and
work out as many of these exercises as possible.

There are various options for using the material as a text for courses,
depending on the instructor’s intention and inclination. Any one-semester
course, however, has to cover Sections 1.1 and 1.2 and Sections 2.1 to 2.4, and
might then continue with

• Sections 2.5 and 2.6 and the Shilov boundary if the main emphasis is
on uniform algebras,

• Sections 1.5 and 2.11 and the corresponding passages of Chapters 3, 4
and 5 when concentrating on projective tensor products,

• Selected topics from Chapter 3 if the focus is on general Banach algebras
rather than group algebras or uniform algebras,

• Sections 2.7 and 4.4 and, if time permits, parts of Chapter 5 whenever
applications in commutative harmonic analysis is the preferred objective.

Major portions of the book grew out of graduate courses taught at the Uni-
versity of Heidelberg, the Technical University of Munich and the University
of Paderborn.

I owe a great deal to two colleagues and friends. Robert J. Archbold and
Ali Ülger have both taken up the onerous burden of reading substantial parts
of the text and made many helpful suggestions for improvement. I am also
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indebted to Bert Schreiber for his help concerning the coset ring of an Abelian
group. Finally, I would like to express my appreciation to the editorial staff
of Springer-Verlag for their professional support.

Paderborn Eberhard Kaniuth
June, 2008
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1

General Theory of Banach Algebras

This introductory chapter contains several topics which in one way or the
other are basic for everything that follows. Although this is a book on com-
mutative Banach algebras, we do not assume commutativity until Chapter 2.
In Section 1.1, after giving the definition of a complex Banach algebra, we
present a number of examples which play an important role later. We outline
the standard construction of adjoining an identity to a Banach algebra and
prove some results on approximate identities. The fundamental concept of the
spectrum of a Banach algebra element is defined in Section 1.2. The spectrum
is shown to be nonempty and the spectral radius formula is given. We also
treat the important issue of when the spectrum of an element of a Banach
algebra A remains unchanged when embedding A into a larger Banach al-
gebra. Because strong emphasis is placed on algebras appearing in harmonic
analysis, we consider in Section 1.3 the convolution algebras L1(G) and, more
generally, Beurling algebras L1(G, ω) on locally compact groups G. Both are
investigated in subsequent chapters under various aspects. In Section 1.4 we
study ideals and quotients of Banach algebras and also introduce the multi-
plier algebra. A complete description is given of all closed ideals in C0(X), the
algebra of continuous functions on a locally compact Hausdorff space X which
vanish at infinity, and the closed ideals in L1(G) are shown to be precisely
the closed translation invariant subspaces of L1(G). Finally, in Section 1.5
tensor products of two Banach algebras A and B are discussed. As examples
we identify L1(G, A), the L1-algebra of A-valued integrable functions on a
locally compact group G, as the projective tensor product of L1(G) and A
and C0(X, A) as the injective tensor product of C0(X) and A.

1.1 Basic definitions and examples

A normed linear space (A, ‖ · ‖) over the complex number field C is called a
normed algebra if it is an algebra and the norm is submultiplicative; that is,
‖xy‖ ≤ ‖x‖ · ‖y‖ for all x, y ∈ A. A normed algebra A is said to be a Banach

E. Kaniuth, A Course in Commutative Banach Algebras, Graduate Texts in Mathematics,
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2 1 General Theory of Banach Algebras

algebra if the normed space (A, ‖ · ‖) is a Banach space. It is easy to see that
the completion ( ˜A, ‖ · ‖) of a normed algebra (A, ‖ · ‖) is a Banach algebra.
Indeed, if x, y ∈ ˜A and (xn)n and (yn)n are sequences in A converging in ˜A

to x and y, respectively, then (xnyn)n is a Cauchy sequence in ˜A, and the
product of x and y can be defined to be xy = limn→∞ xnyn.

An algebra A is called commutative if xy = yx for all x, y ∈ A. Moreover,
A is called unital or an algebra with identity if there exists e ∈ A such that
ex = x = xe for all x ∈ A. If A is a unital normed algebra and A �= {0},
then e is unique and ‖e‖ ≥ 1 as follows from submultiplicativity of the norm.
We do not assume that ‖e‖ = 1 although this is the case in all examples.
Note, however, that there always exists an equivalent norm | · | on A such that
|e| = 1. In fact, this is a consequence of the following proposition.

Proposition 1.1.1. Let A be an algebra with identity e and with a norm ‖ · ‖
under which it is a Banach space. Suppose that the multiplication is continuous
in each factor separately. Then there exists a norm ‖·‖0 on A that is equivalent
to ‖ · ‖ and for which ‖xy‖0 ≤ ‖x‖0‖y‖0 holds for all x, y ∈ A.

Proof. For x ∈ A, let Lx : A → A be the left translation operator y → xy.
By the continuity assumption, Lx is continuous. Moreover, since x = Lx(e),
the map x → Lx is an isomorphism of A into B(A), the algebra of bounded
linear operators on A. Let

‖x‖0 = ‖Lx‖ = sup{‖xy‖ : ‖y‖ ≤ 1}, x ∈ A.

Clearly, ‖ · ‖0 is a norm on A satisfying ‖xy‖0 ≤ ‖x‖0‖y‖0. We claim that
‖ · ‖0 is a complete norm. For that, note first that

‖x‖0 ≥ ‖x(‖e‖−1e)‖ = ‖e‖−1‖x‖.

Thus, if (xn)n is a Cauchy sequence with respect to ‖ · ‖0, then it is also a
Cauchy sequence in ‖·‖ and hence xn → x for some x ∈ A. On the other hand,
because (Lxn)n is a Cauchy sequence in B(A), Lxn → T for some T ∈ B(A).
By continuity of the product in the first variable, Lxny → Lxy for each y ∈ A.
So T = Lx, which proves the claim. Thus both ‖ · ‖ and ‖ · ‖0 are complete
norms on A. Since ‖ · ‖ ≤ ‖e‖ · ‖ · ‖0, the closed graph theorem implies that
the two norms are equivalent. �	

There are three main classes of Banach algebras which may be described
roughly as algebras of functions (with pointwise multiplication), algebras of
operators (with composition of operators), and group algebras (with convolu-
tion product). We now give examples of Banach algebras in each of the first
two classes, whereas convolution algebras are postponed to Section 1.3. Ad-
ditional, somewhat more elaborate, examples are presented later in the text
and also in the exercises.
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Example 1.1.2. Let X be a locally compact Hausdorff space. We denote
by Cb(X), C0(X), and Cc(X), respectively, the algebras of all continuous
complex-valued functions on X that are bounded, vanish at infinity, or have
compact support. The algebra operations are the usual ones of pointwise ad-
dition, multiplication, and scalar multiplication. With the supremum norm

‖f‖∞ = sup
x∈X

|f(x)| (f ∈ C0(X)),

the algebras Cb(X) and C0(X) are commutative Banach algebras, whereas
Cc(X) is complete only when X is compact. If X is noncompact, then only
Cb(X) is unital.

Example 1.1.3. Let X be a compact subset of C. We introduce three unital
closed subalgebras of (C(X), ‖ · ‖∞ as follows.

The first one, denoted A(X), is the algebra of all functions f : X →
C which are continuous on X and holomorphic on the interior X◦ of X .
Clearly, A(X) is complete since the uniform limit of a sequence of holomorphic
functions is holomorphic. A particularly interesting special case is the disc
algebra A(D), where D denotes the closed unit disc D = {z ∈ C : |z| ≤ 1} in
the plane.

The second one, P (X), is the subalgebra of C(X) consisting of all functions
which are uniform limits of polynomial functions on X . Finally, R(X) is the
subalgebra of C(X) of all functions which are uniform limits on X of rational
functions p/q, where p and q are polynomials and q has no zero on X .

Note that we always have P (X) ⊆ R(X) ⊆ A(X) and that equality holds
at either place can be interpreted as a result in approximation theory.

Example 1.1.4. Let a, b ∈ R such that a < b and n ∈ N, and let Cn[a, b] be
the space of all complex-valued functions on [a,b] which are n-times continu-
ously differentiable. With pointwise operations, Cn[a, b] becomes a commuta-
tive algebra. We define a norm on Cn[a, b] by

‖f‖ =
n
∑

k=0

1
k!
‖f (k)‖∞

for f ∈ Cn[a, b]. This norm is submultiplicative. Indeed, for f, g ∈ Cn[a, b],

‖fg‖ =
n
∑

k=0

1
k!
‖(fg)(k)‖∞ =

n
∑

k=0

1
k!

∥

∥

∥

∥

∥

∥

k
∑

j=0

(

k

j

)

f (j)g(k−j)

∥

∥

∥

∥

∥

∥

∞

=
n
∑

k=0

∥

∥

∥

∥

∥

∥

k
∑

j=0

1
j!(k − j)!

f (j)g(k−j)

∥

∥

∥

∥

∥

∥

∞

≤
n
∑

k=0

k
∑

j=0

1
j!
‖f (j)‖∞

1
(k − j)!

‖g(k−j)‖∞
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≤
n
∑

l=0

n
∑

j=0

1
j!

∥

∥

∥
f (j)

∥

∥

∥

∞

1
l!
‖g(l)‖∞

= ‖f‖ · ‖g‖.

We claim that Cn[a, b] is complete. To verify this, let (fm)m be a Cauchy
sequence in Cn[a, b]. Then, by definition of the norm, for each 0 ≤ j ≤
n, (f (j)

m )m is a Cauchy sequence in C[a, b] with respect to the ‖ · ‖∞-norm.
Let gj = limm→∞ f

(j)
m for 0 ≤ j ≤ n. We show by induction on j that g0 is

j-times differentiable and g
(j)
0 = gj . As nothing has to be shown for j = 0,

assume that 1 ≤ j ≤ n and that g0 is (j − 1)-times differentiable and satisfies
g
(j−1)
0 = gj−1.

For all m ∈ N and each t ∈ [a, b] we have

f (j−1)
m (t) = f (j−1)

m (a) +
∫ t

a

f (j)
m (s)ds.

Because f
(j)
m and f

(j−1)
m converge uniformly with limit gj and gj−1, respec-

tively, the inductive hypothesis gives

g
(j−1)
0 (t) = gj−1(t) = gj−1(a) +

∫ t

a

gj(s)ds = g
(j−1)
0 (a) +

∫ t

a

gj(s)ds

for all t ∈ [a, b]. It follows that g
(j−1)
0 is differentiable and (g(j−1)

0 )′(t) = gj(t)
for all t ∈ [a, b]. This finishes the inductive proof. Thus, taking f = g0, f is
n-times differentiable and f (j) = gj for 0 ≤ j ≤ n. Since f

(j)
m → gj uniformly

for each j, it follows that fm → f in Cn[a, b].

Example 1.1.5. For f ∈ C(T) and n ∈ Z, the nth Fourier coefficient cn(f)
is defined by

cn(f) =
1
2π

∫ 2π

0

f(eit)e−intdt.

Let AC(T) denote the space of all functions f ∈ C(T) the Fourier series
∑

n∈Z
cn(f)eint of which is absolutely convergent; that is, f ∈ AC(T) if and

only if (cn(f))n ∈ l1(Z). Conversely, given (cn)n ∈ l1(Z), define f ∈ C(T) by

f(eit) =
∑

k∈Z

ckeikt, t ∈ [0, 2π].

Then, for each n ∈ Z,

cn(f) =
1
2π

∫ 2π

0

(

∑

k∈Z

ckeikt

)

e−intdt

=
1
2π

∑

k∈Z

ck

∫ 2π

0

ei(k−n)tdt

= cn.
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Thus, equipped with the norm ‖f‖ =
∑

n∈Z
|cn(f)|, AC(T) is a Banach space

and isometrically isomorphic to l1(Z). For f, g ∈ AC(T) and n ∈ Z,

cn(fg) =
1
2π

∫ 2π

0

f(eit)e−int

(

∑

k∈Z

ck(g)e−ikt

)

dt

=
1
2π

∑

k∈Z

ck(g)
∫ 2π

0

f(eit)e−i(n−k)tdt

=
∑

k∈Z

ck(g)cn−k(f).

This implies
∑

n∈Z

|cn(fg)| ≤
∑

j∈Z

|cj(f)| ·
∑

k∈Z

|ck(g)|,

and hence AC(T) is a commutative Banach algebra under pointwise multipli-
cation. Note that the product on l1(Z), which makes the map f → (cn(f))n

from AC(T) to l1(Z) an algebra isomorphism, is then given by the following
formula. For (αn)n and (βn)n in l1(Z), let (αβ)n =

∑

k∈Z
αn−kβk, n ∈ Z.

This is the convolution on l1(Z) (see Section 1.3).

Definition 1.1.6. Let A be a C-algebra. An involution on A is a mapping
∗ : x → x∗ from A into A satisfying the following conditions.

(1) (x + y)∗ = x∗ + y∗ and (λx)∗ = λx∗,
(2) (xy)∗ = y∗x∗ and (x∗)∗ = x,

for all x, y ∈ A and λ ∈ C. A is then called a ∗-algebra or an algebra with
involution. A normed algebra (Banach algebra) with involution is called a
normed ∗-algebra (Banach ∗-algebra) if the involution is isometric; that is,
‖x∗‖ = ‖x‖ for all x ∈ A.

Example 1.1.7. (1) Let A be an algebra under pointwise operations consist-
ing of complex-valued functions. Suppose that A contains with every function
f its complex conjugate f . Then f → f defines an involution on A.

(2) Complex conjugation does not define an involution on the disc algebra
A(D) because the function z → z is not holomorphic. However, one can define
an involution on A(D) by setting f∗(z) = f(z) for f ∈ A(D), z ∈ D. With this
involution, A(D) becomes a Banach ∗-algebra (Exercise 1.6.15).

(3) Let H be a Hilbert space, and for T ∈ B(H) let T ∗ ∈ B(H) denote the
adjoint operator. Then T → T ∗ defines an involution on B(H) making B(H)
a Banach ∗-algebra.

An algebra A can always be embedded into an algebra with identity as
follows. Let Ae denote the set of all pairs (x, λ), x ∈ A, λ ∈ C, that is,
Ae = A × C. Then Ae becomes an algebra if the linear space operations and
multiplication are defined by
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(x, λ) + (y, μ) = (x + y, λ + μ), μ(x, λ) = (μx, μλ)

and
(x, λ)(y, μ) = (xy + λy + μx, λμ)

for x, y ∈ A and λ, μ ∈ C. A simple calculation shows that the element
e = (0, 1) ∈ Ae is an identity for Ae. Moreover, the mapping x → (x, 0) is an
algebra isomorphism of A onto an ideal of codimension one in Ae. Obviously,
Ae is commutative if and only if A is commutative.

Now suppose that A is a normed algebra. We introduce a norm on Ae by

‖(x, λ)‖ = ‖x‖ + |λ|, x ∈ A, λ ∈ C.

It is straightforward that this turns Ae into a normed algebra and that Ae

is a Banach algebra provided A is complete. As (x, λ) = (x, 0) + λ(0, 1), it is
customary to write elements (x, λ) as x + λe. The above process is usually
referred to as that of adjoining an identity to A and Ae is called the unitisation
of A . The utility of Ae is due to the fact that algebras with identity are often
easier to deal with than algebras without identity.

If A is a ∗-algebra, then Ae becomes a ∗-algebra by simply defining the
involution by (x + λ)∗ = x∗ + λe. It is also obvious that if A is a normed
∗-algebra (Banach ∗-algebra), then so is Ae.

If A lacks an identity, then an approximate identity often serves as a good
substitute. We proceed by introducing this notion.

Definition 1.1.8. Let A be a normed algebra. A left (right) approximate
identity for A is a net (eλ)λ in A such that eλx → x (xeλ → x) for each
x ∈ A. An approximate identity for A is a net (eλ)λ which is both a left and
a right approximate identity. A (left or right) approximate identity (eλ)λ is
bounded by M > 0 if ‖eλ‖ ≤ M for all λ.

Definition 1.1.9. A has left (right) approximate units if, for each x ∈ A and
ε > 0, there exists u ∈ A such that ‖x − ux‖ ≤ ε (‖x − xu‖ ≤ ε), and A has
an approximate unit if, for each x ∈ A and ε > 0, there exists u ∈ A such
that ‖x − ux‖ ≤ ε and ‖x − xu‖ ≤ ε. A has a (left, right) approximate unit
bounded by M > 0, if the elements u can be chosen such that ‖u‖ ≤ M .

Lemma 1.1.10. Let (eλ)λ and (fμ)μ be bounded left and right approximate
identities for A, respectively. Then the net

(eλ + fμ − fμeλ)λ,μ

is a bounded approximate identity for A.

Proof. Let gλ,μ = eλ + fμ − fμeλ. Then, for any x ∈ A,

‖gλ,μx − x‖ = ‖(eλx − x) + fμ(x − eλx)‖ ≤ (1 + ‖fμ‖)‖eλx − x‖
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and, similarly,
‖xgλ,μ − x‖ ≤ (1 + ‖eλ‖)‖x − xfμ‖.

Thus (gλ,μ)λ,μ is an approximate identity. Of course,

‖gλ,μ| ≤ ‖eλ‖ + ‖fμ‖ + ‖eλ‖ · ‖fμ‖,

so that (gλ,μ)λ,μ is bounded. �	

Clearly, if a normed algebra has a left approximate identity (bounded by
M), then it has left approximate units (bounded by M). Actually, as the
following proposition shows, these two properties are equivalent.

Proposition 1.1.11. Let A be a normed algebra and let M ≥ 1. Then the
following three conditions are equivalent.

(i) A has left approximate units bounded by M .
(ii) Given finitely many elements x1, . . . , xn in A and ε > 0, there exists u ∈ A

such that ‖u‖ ≤ M and ‖xj − uxj‖ ≤ ε for j = 1, . . . , n.
(iii) A has a left approximate identity bounded by M .

Proof. To prove (i) ⇒ (ii), using the formal notation (1 − x)y = y − xy for
x, y ∈ A, we successively choose u1, . . . , un ∈ A satisfying ‖uj‖ ≤ M and

‖(1 − uj) · . . . · (1 − u1)xj‖ ≤ ε

2(1 + M)n−j+1
, 1 ≤ j ≤ n.

Define v ∈ A by 1 − v = (1 − un) · . . . · (1 − u1). Then, for j = 1, . . . , n, we
have

‖xj − vxj‖ ≤ ‖(1 − un) · . . . · (1 − uj+1)‖ · ‖(1 − uj) · . . . · (1 − u1)xj‖

≤ (1 + M)n−j ε

2(1 + M)n−j+1

=
ε

2(1 + M)
.

Let now R = max{‖xj‖ : 1 ≤ j ≤ n}, and choose u ∈ A with ‖u‖ ≤ M and
‖v − uv‖ ≤ ε/(2R + 1). Then, for each 1 ≤ j ≤ n, it follows that

‖xj − uxj‖ ≤ ‖xj − vxj‖ + ‖vxj − uvxj‖ + ‖uxj − uvxj‖

≤ ε

2(1 + M)
+

Rε

2R + 1
+

Mε

2(1 + M)
< ε,

as required.
(ii) ⇒ (iii) Let Λ be the family of all nonempty finite subsets of A. For

λ ∈ Λ, let |λ| denote the number of elements in λ. Ordered by inclusion, Λ is
a directed set. For each λ ∈ Λ, by (ii) there exists uλ ∈ A with ‖uλ‖ ≤ M and
‖x − uλx‖ ≤ |λ|−1 for all x ∈ λ. Then (uλ)λ is a left approximate identity of
bound M for A.

Finally, as already noticed, (iii) ⇒ (i). �	
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1.2 The spectrum of a Banach algebra element

The theme of this section is to introduce the basic concept of the spectrum
of an element of a Banach algebra and to establish several important results
about spectra. The reader will observe that this concept extends the notion
of spectrum of a bounded linear operator on a Hilbert space.

Definition 1.2.1. Let A be a complex algebra with identity e. An element
x ∈ A is called invertible if there exists y ∈ A such that xy = yx = e. Then y
is unique and called the inverse, denoted x−1, of x. Let G(A) denote the set
of invertible elements of A. Then G(A) is a group, and (xy)−1 = y−1x−1 for
x, y ∈ G(A).

For x ∈ A, the set

σA(x) = {λ ∈ C : λe − x �∈ G(A)}

is called the spectrum of x in A, and its complement, ρA(x) = C \ σA(x), the
resolvent set of x.

When A does not have an identity, we define σA(x) and ρA(x) by σA(x) =
σAe(x) and ρA(x) = ρAe(x).

Remark 1.2.2. For any algebra A and x ∈ A, we have σA(x)∪{0} = σAe(x).
To see this, suppose first that A does not have an identity. Then 0 ∈ σA(x)
because otherwise x−1x ∈ A. Thus, in this case σA(x)∪{0} = σA(x) = σAe(x).

Now suppose that A has an identity u. For y ∈ A, it is then easily verified
that u − y ∈ G(A) if and only if e − y ∈ G(Ae). Indeed, if u − y ∈ G(A)
and (u − y)−1 = z + u, z ∈ A, then (e − y)(z + e) = e = (z + e)(e − y),
and conversely, if e − y ∈ G(Ae) and (e − y)−1 = z + μe, z ∈ A, μ ∈ C, then
it follows that μ = 1 and (u − y)(z + u) = u = (z + u)(u − y). For λ �= 0
and x ∈ A, this implies that λu − x = λ(u − (1/λ)x) �∈ G(A) if and only
if λe − x = λ(e − (1/λ)x) �∈ G(Ae). Equivalently, λ ∈ σA(x) if and only if
λ ∈ σAe(x). Hence σA(x) \ {0} = σAe(x) \ {0}. Since 0 ∈ σAe(x), this shows
that σA(x) ∪ {0} = σAe(x).

Most times, whenever the algebra A under consideration is understood,
for x ∈ A we drop the suffix A and simply write σ(x) and ρ(x).

Example 1.2.3. (1) Let X be a compact Hausdorff space and f ∈ C(X). If
λ �∈ f(X), then x → λ − f(x) has no zero on X and hence x → (λ − f(x))−1

is a continuous function. This implies that σC(X)(f) equals the range of f .
(2) Let X be a locally compact, noncompact Hausdorff space and let f ∈

C0(X). Since C0(X) does not have an identity, {0}∪f(X) ⊆ σ(f). Conversely,
let λ �= 0 such that λ �∈ f(X). We show that the function λ−f(x) is invertible
in C0(X)e = C0(X) + C · 1X . The function g defined by

g(x) =
f(x)

1 − 1
λf(x)

, x ∈ X,
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is continuous on X . Moreover, because f vanishes at infinity, so does g. Thus
g ∈ C0(X), and it is easily verified that

(

1
λ

+ g(x)
)

(λ − f(x)) = 1

for all x ∈ X . This proves that σ(f) = f(X) ∪ {0}.
Definition 1.2.4. Let A be a normed algebra. For x ∈ A, the number

rA(x) = inf{‖xn‖1/n : n ∈ N}

is called the spectral radius of x.

Obviously, r(x) ≤ ‖x‖ and r(λx) = |λ|r(x) for λ ∈ C. The formula in the
following lemma is called the spectral radius formula. These two labels, spec-
tral radius and spectral radius formula, are justified soon (compare Theorem
1.2.8).

Lemma 1.2.5. For every x ∈ A, r(x) = limn→∞ ‖xn‖1/n.

Proof. It suffices to show that, given ε > 0, there exists N(ε) ∈ N such
that ‖xn‖1/n < r(x) + ε for all n ≥ N(ε). By definition of r(x), there exists
k ∈ N such that ‖xk‖1/k < r(x) + ε. Now, express any n ∈ N in the form
n = p(n)k + q(n), where p(n) ∈ N0 and 0 ≤ q(n) ≤ k − 1. It follows that

p(n)
n

=
1
k

(

1 − q(n)
n

)

→ 1
k

,

as n → ∞. Hence

‖xn‖1/n ≤ ‖xk‖p(n)/n‖x‖q(n)/n → ‖xk‖1/k < r(x) + ε,

and therefore ‖xn‖1/n < r(x) + ε for all sufficiently large n.

Next we have to find conditions that guarantee the invertibility of an
element of a unital Banach algebra.

Lemma 1.2.6. Let A be a Banach algebra with identity e and let x ∈ A with
r(x) < 1. Then e − x is invertible in A and

(e − x)−1 = e +
∞
∑

n=1

xn.

Proof. Fix any η such that r(x) < η < 1. By Lemma 1.2.5, ‖xn‖1/n ≤ η for
all n ≥ N for some N ∈ N. Then ‖xn‖ ≤ ηn for n ≥ N , and since η < 1,
the series

∑∞
n=1 ‖xn‖ converges. Since A is complete, the sequence of partial

sums ym = e +
∑m

n=1 xn, m ∈ N, converges in A with limit y = e +
∑∞

n=1 xn.
Indeed, ‖y − ym‖ ≤

∑∞
n=m+1 ‖xn‖. Now

(e − x)ym = ym(e − x) = e − xm+1

for all m. Because ym → y and xm → 0 as n → ∞, we conclude that (e−x)y =
y(e − x) = e. �	
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Lemma 1.2.7. Let A be a normed algebra with identity e.

(i) If x, y ∈ G(A) are such that ‖y − x‖ ≤ 1
2‖x−1‖−1, then

‖y−1 − x−1‖ ≤ 2‖x−1‖2‖y − x‖.

In particular, the mapping x → x−1 is a homeomorphism of G(A).
(ii) Suppose that A is complete. Then G(A) is open in A, and if x ∈ A is such

that ‖x − e‖ < 1, then x ∈ G(A).

Proof. (i) If x and y are as in (i), then

‖y−1‖ − ‖x−1‖ ≤ ‖y−1 − x−1‖ = ‖y−1(x − y)x−1‖ ≤ 1
2
‖y−1‖,

whence ‖y−1‖ ≤ 2‖x−1‖ and therefore

‖y−1 − x−1‖ ≤ ‖y−1‖ · ‖x − y‖ · ‖x−1‖ ≤ 2‖x−1‖2‖y − x‖.

Thus the bijection x → x−1 of G(A) is continuous and hence, being its own
inverse, a homeomorphism.

(ii) Let x ∈ A be such that ‖e − x‖ < 1. Then r(e − x) < 1 and therefore
x = e − (e − x) ∈ G(A) by Lemma 1.2.6. Now let x be an arbitrary element
of G(A), and let y ∈ A with ‖y − x‖ < ‖x−1‖−1. Then

‖e − x−1y‖ ≤ ‖x−1‖ · ‖x − y‖ < 1.

By what we have already seen, x−1y ∈ G(A) and hence y ∈ G(A). This shows
that G(A) is open in A. �	

The following theorem is one of the most fundamental results in the theory
of Banach algebras. The first proof we give is the standard one involving an
application of Liouville’s theorem. This use of Liouville’s theorem is the first
example of how the theory of holomorphic functions of one complex variable
enters the study of Banach algebras. We present several other examples of
this phenomenon in subsequent chapters.

Theorem 1.2.8. Let A be a Banach algebra and x ∈ A. Then the spectrum
σ(x) of x is a nonempty compact subset of C and

max{|λ| : λ ∈ σ(x)} = r(x).

Proof. Of course we may assume that A has an identity e. Note first that
σ(x) is closed. In fact, G(A) is open in A by Lemma 1.2.7 and C \ σ(x) is
the inverse image of the set G(A) with respect to the continuous mapping
λ → λe − x. Moreover, if |λ| > r(x) then r((1/λ)x) < 1 and hence λe − x =
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λ(e− (1/λ)x) is invertible by Lemma 1.2.6. Thus σ(x) is contained in the disc
{λ ∈ C : |λ| ≤ r(x)}.

We show next that σ(x) �= ∅. Take any l ∈ A∗ and consider the function
f on ρ(x) defined by

f(λ) = l((λe − x)−1).

For λ, μ ∈ ρ(x) we have

(λe − x)−1 = (λe − x)−1(μe − x)(μe − x)−1

= (λe − x)−1 ((μ − λ)e + λe − x) (μe − x)−1

=
(

(μ − λ)(λe − x)−1 + e
)

(μe − x)−1

= (μ − λ)(λe − x)−1(μe − x)−1 + (μe − x)−1,

and therefore, when λ �= μ,

f(λ) − f(μ)
λ − μ

= −l
(

(λe − x)−1(μe − x)−1
)

.

Since l is continuous and the mapping y → y−1 of G(A) into itself is continuous
(Lemma 1.2.7), we conclude that f is a holomorphic function on ρ(x). For
|λ| > ‖x‖, we have

(λe − x)−1 =
(

λ

(

e − 1
λ

x

))−1

=
1
λ

(

e − 1
λ

x

)−1

=
1
λ

∞
∑

n=0

λ−nxn

and hence

‖(λe − x)−1‖ ≤ 1
|λ|

∞
∑

n=0

(

‖x‖
|λ|

)n

=
1
|λ| ·

1
1 − |λ|−1‖x‖ ,

which tends to zero as |λ| → ∞. Thus, since |f(λ)| ≤ ‖l‖ · ‖(λe − x)−1‖, f
vanishes at infinity. In particular, f is a bounded function.

Assume now that σ(x) = ∅. Then f is a bounded entire function and hence
constant by Liouville’s theorem. Since f vanishes at infinity, it follows that
f = 0. Because l ∈ A∗ was arbitrary, we get that l((λe − x)−1) = 0 for each
λ ∈ ρ(x) and all l ∈ A∗, contradicting the Hahn–Banach theorem. This shows
that indeed σ(x) is nonempty.

Let s(x) = sup{|λ| : λ ∈ σ(x)}. Then s(x) ≤ r(x). Towards a contradic-
tion, assume that s(x) < r(x) and select any μ such that s(x) < μ < r(x). By
what we have shown above, for l ∈ A∗ the function f(λ) = l((λe − x)−1) is
holomorphic on the set U = {λ ∈ C : |λ| > s(x)} . Now, for |λ| > ‖x‖,

f(λ) =
∞
∑

n=0

λ−(n+1)l(xn).

Thus this series is nothing but the Laurent series of f on the domain |λ| > ‖x‖.
Because f is holomorphic on U , it follows from uniqueness of the Laurent series
expansion that the series



12 1 General Theory of Banach Algebras

∞
∑

n=0

l(xn)μ−(n+1)

converges. This implies that l(μ−(n+1)xn) → 0 as n → ∞. So, for each l ∈ A∗,
the set of complex numbers

{l(μ−(n+1)xn) : n ∈ N}

is bounded. By the uniform boundedness principle, there exists C > 0 such
that ‖μ−(n+1)xn‖ ≤ C for all n ∈ N. It follows that

r(x) = lim
n→∞

‖xn‖1/n ≤ lim
n→∞

(Cμn+1)1/n = μ.

This contradiction shows that r(x) = s(x) and finishes the proof of the theo-
rem. �	

Theorem 1.2.8 can be proved without recourse to the theory of holomor-
phic functions and Liouville’s theorem in particular. For illustration, we also
present such a proof. Let A be a Banach algebra and let x ∈ A. We show that
there exists λ ∈ σ(x) such that |λ| = r(x). Of course, we can again assume
that A has an identity e.

To begin with, note that if r(x) = 0 then 0 ∈ σ(x). Indeed, otherwise x is
invertible and

0 < ‖e‖ = ‖xn(x−1)n‖ ≤ ‖xn‖ · ‖x−1‖n

for all n ∈ N, which implies r(x) ≥ ‖x−1‖−1. So let r(x) > 0. Since r(μx) =
|μ|r(x) and σ(μx) = μσ(x) for μ �= 0, we can assume that r(x) = 1.

For n ∈ N, denote by Ωn the set of all n-th roots of unity. For ω ∈ Ωn, ω �=
1, we have

∑n−1
j=0 ωj = 0 since (1 − ω)

∑n−1
j=0 ωj = 1− ωn = 0. Thus, for each

1 ≤ k ≤ n − 1,

∑

ω∈Ωn

ωk =
n−1
∑

j=0

(

exp 2π
j

n

)k

=
n−1
∑

j=0

(

exp 2π
k

n

)j

= 0.

Now suppose that e − ωx is invertible for every ω ∈ Ωn. Then

(e − ωx)−1(e − (ωx)n) = e + ωx + · · · + (ωx)n−1

for all ω ∈ Ωn, and hence

1
n

(e − xn)
∑

ω∈Ωn

(e − ωx)−1 =
1
n

∑

ω∈Ωn

(

n−1
∑

k=0

(ωx)k

)

=
1
n

n
∑

k=0

(

xk
∑

ω∈Ωn

ωk

)

= e.
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Thus e − xn is invertible in A and

(e − xn)−1 =
1
n

∑

ω∈Ωn

(e − ωx)−1.

Towards a contradiction, assume now that λe − x is invertible for all λ ∈ C

with |λ| ≥ 1 = r(x), that is, e − λx is invertible whenever |λ| ≤ 1. Because
the function λ → ‖(e − λx)−1‖ is continuous on ρ(x), it follows that

M = sup{‖(e − λx)−1‖ : λ ∈ C, |λ| ≤ 1} < ∞.

For each |λ| ≤ 1 and ω ∈ Ωn, n ∈ N, the element e − ωλx is invertible.
Therefore the above formula for inverses and Lemma 1.2.7(i) yield

‖(e − (λx)n)−1 − (e − xn)−1‖ ≤ 1
n

∑

ω∈Ωn

‖(e − ωλx)−1 − (e − ωx)−1‖

≤ 2
n

∑

ω∈Ωn

‖(e − ωx)−1‖2 · ‖ωλx − ωx‖

≤ 2M2|λ − 1| · ‖x‖,

provided λ is such that

|λ − 1| · ‖x‖ = ‖(e − ωλx) − (e − ωx‖ ≤ 1
2
‖(e − ωx)−1‖−1.

We claim next that (e − xn)−1 → e as n → ∞. For that, let ε > 0 be given
and choose 0 < λ < 1 such that

2M2|λ − 1| · ‖x‖ ≤ ε and |λ − 1| · ‖x‖ ≤ 1
2M

.

Because M ≥ ‖(e − ωx)−1‖, we then get

‖(e − (λx)n)−1 − (e − xn)−1‖ ≤ ε

for all n ∈ N. Now

lim
n→∞

‖(λx)n‖1/n = r(λx) = λ < 1,

and hence (λx)n → 0 as n → ∞. The map y → y−1 being continuous on
G(A), we obtain that (e − (λx)n)−1 → e. It follows that

‖e − (e − xn)−1‖ ≤ 2ε

for n large enough. This proves the above claim. Finally, using continuity of
y → y−1 again, we conclude that xn → 0 as n → ∞. This contradicts the
fact that ‖xn‖ ≥ r(x)n = 1 for all n ∈ N. Thus there exists λ ∈ C such that
|λ| ≥ r(x) and λe − x is not invertible.
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The following theorem, which turns out to be a simple consequence of
Theorem 1.2.8, is usually called the Gelfand–Mazur theorem. It is basic to
much of Gelfand’s theory, which is developed in Chapter 2, and it generalises
Frobenius’ classical theorem which says that every finite-dimensional complex
division algebra is isomorphic to the complex number field.

Theorem 1.2.9. Let A be a Banach algebra with identity e, and suppose that
every nonzero element x of A is invertible. Then A is isomorphic to the field
of complex numbers.

Proof. By Theorem 1.2.8, for every x ∈ A, there exists λx ∈ C such that
λxe−x �∈ G(A). Since G(A) = A \ {0} by hypothesis, it follows that λxe = x.
Then, of course, λx is unique, and the mapping x → λx is an isomorphism
from A onto C. �	

The following lemma represents a special case of a more general spectral
mapping theorem in the context of the holomorphic functional calculus for
commutative Banach algebras (Section 3.1).

Lemma 1.2.10. Let p be a complex polynomial (without constant term if A
does not have an identity). Then, for every element x ∈ A,

σA(p(x)) = p(σA(x)) = {p(λ) : λ ∈ σA(x)}.

Proof. Suppose first that A has an identity e. If p is constant, say p = α,
then p(x) = αe and hence σA(p(x)) = σA(αe) = {α} = p(σA(x)). So let p be
non-constant. Momentarily, fix any λ ∈ C and let λ1, . . . , λn be the roots of
the polynomial q(z) = λ − p(z). Then

λe − p(x) = (λ − p(z))(x) = α(λ1e − x) · . . . · (λne − x),

where 0 �= α ∈ C, and hence λe−p(x) ∈ G(A) if and only if λie−x ∈ G(A) for
all i = 1, . . . , n. It follows that if λ ∈ σA(p(x)) then λi ∈ σA(x) for at least one
i and therefore λ = p(λi) ∈ p(σA(x)). This shows that σA(p(x)) ⊆ p(σA(x)).

Conversely, let μ ∈ σA(x) and put λ = p(μ). Then q(μ) = 0 and hence
μ = λi for some i. This means that λi ∈ σA(x) and consequently λe − p(x) is
not invertible, whence λ ∈ σA(p(x)).

Finally, suppose that A does not have an identity. Then

σA(p(x)) = σAe(p(x)) = p(σAe(x)) = p(σA(x))

by definition and by what we have shown already. �	

Let A be a Banach algebra with identity e and let B a closed subalgebra
of A which contains e. It is an important concern to clarify the relationship
between σA(x) and σB(x) for elements x of B. The result, Theorem 1.2.12
below, is employed several times in Chapter 2.

In the sequel, for any topological space X and subset Y of X , Y ◦ denotes
the interior of Y and ∂(Y ) denotes the topological boundary of Y ; that is,
Y ◦ = X \ (X \ Y ) and ∂(Y ) = Y \ Y ◦.
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Lemma 1.2.11. Let A be a Banach algebra with identity e and B a closed
subalgebra of A containing e. If x ∈ B, then

σA(x) ⊆ σB(x) and ∂(σB(x)) ⊆ ∂(σA(x)).

Proof. The first inclusion is immediate from the fact that if λe − x ∈ G(B),
then λe − x ∈ G(A). For the second inclusion it suffices to show that
∂(σB(x)) ⊆ σA(x), because then

∂(σB(x)) ⊆ σA(x) ∩ ρB(x) ⊆ σA(x) ∩ ρA(x) = ∂(σA(x)).

Let λ ∈ ∂(σB(x)) and set y = λe − x. Then y �∈ G(B) and there exists a
sequence (λn)n in ρB(x) with λn → λ. Thus, with yn = λne − x, we have
yn ∈ G(B) and yn → y. Let zn = y−1

n , n ∈ N. Then ‖zn‖ → ∞ as n → ∞.
Indeed, otherwise there exist M < ∞ and a subsequence (znk

)k such that
‖znk

‖ ≤ M for all k and therefore

‖e − znk
y‖ = ‖znk

(ynk
− y)‖ ≤ M‖ynk

− y‖ → 0

as k → ∞. It follows that znk
y is invertible for large k, and hence y is invertible

in B, a contradiction. So

‖znyn‖
‖zn‖

=
‖e‖
‖zn‖

→ 0.

Because
∣

∣

∣

∣

‖zny‖
‖zn‖

− ‖znyn‖
‖zn‖

∣

∣

∣

∣

≤ 1
‖zn‖

‖zn(y − yn)‖ ≤ ‖y − yn‖ → 0,

the elements wn = ‖zn‖−1zn, n ∈ N, of A satisfy ‖wn‖ = 1 and ‖wny‖ → 0.
This implies that y cannot be invertible in A because otherwise

1 = ‖wn‖ = ‖(wny)y−1‖ ≤ ‖wny‖ · ‖y−1‖ → 0.

So λ ∈ σA(x), as was to be shown. �	

Theorem 1.2.12. Let A be a Banach algebra with identity e and let x ∈ A.
Then the following conditions are equivalent.

(i) ρA(x) is connected.
(ii) σA(x) = σB(x) for every closed subalgebra B of A containing x and e.

Proof. Suppose that (i) holds and let B be any subalgebra of A as in (ii).
We have to show that σB(x) ⊆ σA(x), equivalently, that σB(x) ∩ ρA(x) = ∅.
Assume that there exists λ ∈ σB(x)∩ρA(x) and select any μ ∈ ρB(x) ⊆ ρA(x).
Since ρA(x) is connected and open in C, it is path connected. Hence there
exists a continuous function γ : [0, 1] → ρA(x) with γ(0) = λ and γ(1) = μ.
Since γ(0) ∈ σB(x), the set {t ∈ [0, 1] : γ(t) ∈ σB(x)} is nonempty. Let s
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be its supremum. Then s < 1, because γ(1) ∈ ρB(x) and ρB(x) is open. By
definition of s, γ((s, 1]) ⊆ ρB(x) and therefore

γ(s) ∈ γ((s, 1]) ⊆ ρB(x) and γ(s) ∈ γ([0, 1]) ∩ σB(x) ⊆ σB(x),

whence γ(s) ∈ ∂(σB(x)). Lemma 1.2.11 shows that γ(s) ∈ ∂(σA(x)) ⊆ σA(x).
This contradicts γ([0, 1]) ⊆ ρA(x) and so σB(x) ∩ ρA(x) = ∅.

To show that conversely (ii) implies (i), let B be the closed subalgebra of
A generated by x and e. Then B is the closure of the subalgebra consisting of
all elements of the form p(x), where p is a polynomial. For z ∈ C and δ > 0,
set K(z, δ) = {λ ∈ C : |λ − z| ≤ δ}. Let Γ denote the connected component
of C\σA(x) that contains C\K(0, r(x)) (recall that σA(x) ⊆ K(0, r(x))). We
have to show that Γ = ρA(x).

The set Γ is open and closed in ρA(x) since ρA(x) is locally path connected.
Thus C\Γ is closed and ρA(x)\Γ is open in C. As C\Γ = σA(x)∪(ρA(x)\Γ ),
we get that

∂(C \ Γ ) = (C \ Γ ) \ (C \ Γ )◦ ⊆ (C \ Γ ) \ (ρA(x) \ Γ ) ⊆ σA(x).

Since C\Γ is compact, for any polynomial p there exists z0 ∈ C\Γ such that
|p(z)| ≤ |p(z0)| for all z ∈ C \ Γ . Then, necessarily, z0 ∈ ∂(C \ Γ ) whenever
p is nonconstant. In fact, otherwise K(z0, δ) ⊆ C \ Γ for some δ > 0 and
then the maximum modulus principle would yield that p is constant. Since
∂(C \ Γ ) ⊆ σA(x), we thus conclude that

max{|p(z)| : z ∈ C \ Γ} ≤ max{|p(z)| : z ∈ σA(x)}

for every polynomial p. Now σA(p(x)) = p(σA(x)) by Lemma 1.2.10, and
hence

max{|p(z)| : z ∈ C \ Γ} ≤ r(p(x)) ≤ ‖p(x)‖

for every polynomial p.
By hypothesis ρA(x) = ρB(x). Thus it remains to show that ρB(x) ⊆ Γ .

To that end, fix λ ∈ ρB(x) and let q(z) = λ − z for z ∈ C. Then q(x) =
λe − x is invertible in B. Thus there exists a sequence (pn)n of polynomials
such that pn(x) → (λe − x)−1. For each n ∈ N, define a polynomial qn by
qn(z) = 1 − q(z)pn(z). Then

qn(x) = e − pn(x)(λe − x) → e − (λe − x)−1(λe − x) = 0.

Since |qn(z)| ≤ ‖qn(x)‖, it follows that qn(z) → 0 for each z ∈ C \ Γ . On the
other hand, q(λ) = 0 and hence qn(λ) = 1 for all n. Hence λ ∈ Γ , as was to
be shown. �	

In particular, Theorem 1.2.12 applies when σA(x) ⊆ R or when σA(x)
is countable. We close this section with showing that the spectral radius is
subadditive and submultiplicative on commuting elements.



1.2 The spectrum of a Banach algebra element 17

Lemma 1.2.13. Let A be a normed algebra and suppose that x, y ∈ A are
such that xy = yx. Then r(xy) ≤ r(x)r(y) and r(x + y) ≤ r(x) + r(y).

Proof. Since (xy)n = xnyn for all n ∈ N, Lemma 1.2.5 yields that

r(xy) = lim
n→∞

‖xnyn‖1/n ≤ lim
n→∞

‖xn‖1/n · lim
n→∞

‖yn‖1/n = r(x)r(y).

The proof of the second inequality requires much more effort. Take any α >
r(x) and β > r(y) and set a = (1/α)x and b = (1/β)y. Then r(a) < 1 and
r(b) < 1.

Because x and y commute, we have

‖(x + y)n‖1/n =

∥

∥

∥

∥

∥

∥

n
∑

j=0

(

n

j

)

xjyn−j

∥

∥

∥

∥

∥

∥

1/n

≤

⎛

⎝

n
∑

j=0

(

n

j

)

αjβn−j‖aj‖ · ‖bn−j‖

⎞

⎠

1/n

.

For each n ∈ N, choose n′, n′′ ∈ N0 such that n′ + n′′ = n and

‖an′
‖ · ‖bn′′

‖ = max
0≤j≤n

‖aj‖ · ‖bn−j‖.

With this choice of n′ and n′′ we have

r(x + y) = lim
n→∞

‖(x + y)n‖1/n

≤ (α + β) lim inf
n→∞

‖an′‖1/n‖bn′′‖1/n.

Now, the sequence (n′/n)n ⊆ [0, 1] has a convergent subsequence (n′
k/nk)k

with limit γ, say. If γ �= 0, then n′
k → ∞ and hence

lim
k→∞

‖an′
k‖1/nk = r(a)γ < 1,

whereas if γ = 0, then

lim sup
k→∞

‖an′
k‖1/nk ≤ lim

k→∞
‖a‖n′

k/nk ≤ 1.

Thus, in either case,

lim sup
k→∞

‖an′
k‖1/nk ≤ 1.

Similarly, since (n′′
k/nk)k converges,

lim sup
k→∞

‖bn′′
k ‖1/nk ≤ 1.

The above upper estimate for r(x+y) now shows that r(x+y) ≤ α+β. Since
this holds for all α > r(x) and β > r(y), it follows that r(x+y) ≤ r(x)+ r(y).

�	
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Using the Gelfand homomorphism (Section 2.2), a much simpler proof of
the preceding lemma can be given. Thus, if A is commutative, r is an algebra
seminorm on A. In general, however, it is not a norm (see the examples in
Section 2.1).

1.3 L1-algebras and Beurling algebras

Let G be a locally compact group with left Haar measure and modular function
Δ. Then L1(G) is not only a Banach space under the norm ‖ · ‖1, but also a
normed algebra with convolution, which we define now, as multiplication.

Let f ∈ L1(G) and g ∈ Lp(G), 1 ≤ p < ∞. Then for almost all x ∈ G, the
function y → f(xy)g(y−1) is integrable on G, and the function f ∗ g, defined
almost everywhere on G by

(f ∗ g)(x) =
∫

G

f(xy)g(y−1)dy,

belongs to Lp(G). Moreover, ‖f ∗ g‖p ≤ ‖f‖1‖g‖p. If p = ∞, then (f ∗ g)(x)
is defined for all x ∈ G and f ∗ g is bounded and uniformly continuous.

With this convolution and the involution defined by f∗(x) = f(x−1)Δ
(x−1), L1(G) is a Banach ∗-algebra. It contains Cc(G) as a dense subalgebra
and is commutative if and only if the group G is Abelian.

For x ∈ G, the left and right translation operators Lx and Rx on functions
on G are defined by Lxf(y) = f(x−1y) and Rxf(y) = f(yx), y ∈ G. Then
‖Lxf‖1 = ‖f‖1 and the map x → Lxf from G into L1(G) is continuous
(compare Lemma 1.3.6 for Beurling algebras).

When G is discrete and the Haar measure is counting measure, (f ∗g)(x) =
∑

y∈G f(xy)g(y−1), and δe, the Dirac function at the neutral element e of G,
is an identity for l1(G). If G is not discrete, then L1(G) does not have an
identity, but it has a two-sided approximate identity with norm bound 1.
In fact, for any open relatively compact symmetric neighbourhood V of e
in G, choose a functions uV ∈ L1(G) such that uV ≥ 0, ‖uV ‖ = 1 and
supp uV ⊆ V . Then, for every f ∈ L1(G), ‖uV ∗ f − f‖1 → 0 as V → {e}.
Similarly, ‖f ∗ uV − f‖1 → 0.

Recall that M(G) is the Banach space of all complex valued regular Borel
measures μ on G with the norm ‖μ‖ = |μ|(G), where |μ| denotes the total
variation of μ. For μ, ν ∈ M(G), the convolution of μ and ν is defined by

〈μ ∗ ν, g〉 =
∫

G

∫

G

g(xy)dμ(x)dν(y)

for g ∈ Cc(G). Then μ ∗ ν ∈ M(G) and ‖μ ∗ ν‖ ≤ ‖μ‖ · ‖ν‖. Note that L1(G)
embeds into M(G) as a subalgebra (in fact, an ideal) by the mapping f → μf ,
where 〈μf , g〉 =

∫

G
g(x)f(x)dx for all g ∈ Cc(G).

We refrain from proving the preceding facts about Lp(G) and M(G) here
and instead refer the reader to the Appendix and the literature given there.
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Definition 1.3.1. A positive function ω on a locally compact group G is
called a weight or weight function if it has the following properties.

(i) ω(xy) ≤ ω(x)ω(y) for all x, y ∈ G.
(ii) ω is Borel measurable.

Example 1.3.2. (1) For α > 0, define ωα on Z by ωα(n) = (1 + |n|)α. Then
ωα is a weight on Z.

(2) The functions t → exp(|t|z), z ∈ T, and t → (1 + |t|)α, α ≥ 0, are
weights on R. More generally, let δ : Rn → [0,∞) be any continuous function
satisfying δ(x + y) ≤ δ(x) + δ(y) for all x, y ∈ Rn. Then ω(x) = (1 + δ(x))α

defines a weight on Rn.

We first note the interesting fact that a weight is bounded away from both
zero and infinity on compact sets.

Lemma 1.3.3. Let C be a compact subset of G. Then there exist positive real
numbers a and b such that a ≤ ω(x) ≤ b for all x ∈ C.

Proof. We first establish the existence of b. To that end, for n ∈ N, let

Un = {x ∈ G : ω(x) < n}.

Then
⋃∞

n=1 Un = G and the sets Un are measurable. Choose n ∈ N such
that |Un| > 0. Then U2

n has a nonempty interior. Fix z ∈ (U2
n)◦ and let

V = (z−1U2
n)◦. Then V is an open neighbourhood of the identity, and hence

by compactness of C there exist y1, . . . , ym ∈ C ∪ C−1 such that

C ∪ C−1 ⊆ y1V ∪ . . . ∪ ymV.

Now, define b > 0 by

b = n2ω(z−1) · max{ω(yj) : 1 ≤ j ≤ m}.

If x ∈ C ∪ C−1, then x = vyj for some v ∈ V and j ∈ {1, . . . , m} and hence

ω(x) ≤ ω(v)ω(yj) ≤ n2ω(z−1)ω(yj) ≤ b,

as wanted. Finally, let
a = inf{ω(x) : x ∈ C},

and suppose that a = 0. Then there exists a sequence (xn)n in C such that
ω(xn) → 0. Because

1 ≤ ω(e) ≤ ω(xn)ω(x−1
n ),

we must have ω(x−1
n ) → ∞, which contradicts the boundedness of ω on the

compact set C−1.

Corollary 1.3.4. Let ω be a weight function on a compact group G. Then
ω(x) ≥ 1 for all x ∈ G.
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Proof. Assume that ω(x) < 1 for some x ∈ G. Since ω(xn) ≤ ω(x)n for all n,
we obtain ω(xn) → 0 as n → ∞. However, G being compact, ω is bounded
away from zero by Lemma 1.3.3.

The functions f on G such that fω ∈ L1(G) form a linear space, which is
denoted L1(G, ω), and ‖f‖1,ω =

∫

G
|f(x)|ω(x)dx defines a norm on L1(G, ω).

If (fn)n is a Cauchy sequence in L1(G, ω), then fnω → g for some g ∈ L1(G)
and hence g/ω ∈ L1(G, ω) and fn → g/ω in L1(G, ω). Thus L1(G, ω) is
complete. With convolution, L1(G, ω) is a Banach algebra. Indeed, for f, g ∈
L1(G, ω),

∫

G

|(f ∗ g)(x)|ω(x)dx ≤
∫

G

ω(x)

(

∫

G

|f(xy)| · |g(y−1)|dy

)

dx

≤
∫

G

∫

G

ω(xy)|f(xy)|ω(y−1)|g(y−1)|dydx

=
∫

G

|g(y−1)|ω(y−1)Δ(y−1) ·
∫

G

|f(x)|ω(x)dx

= ‖f‖1,ω‖g‖1,ω,

and hence f ∗ g ∈ L1(G, ω) and ‖f ∗ g‖1,ω ≤ ‖f‖1,ω‖g‖1,ω. The involution
on L1(G, ω) is defined in exactly the same way as for L1(G). The algebra
L1(G, ω) is called the Beurling algebra on G associated with the weight ω.

It can be shown that, given any weight ω on G, there always exists an
upper-semicontinuous weight ω′ on G such that L1(G, ω) = L1(G, ω′) (Exer-
cise 1.6.35). However, we are not using this fact.

Lemma 1.3.5. Let G be a locally compact group and ω a weight on G.

(i) Every compactly supported function in L1(G) belongs to L1(G, ω).
(ii) Cc(G) is dense in L1(G, ω).

Proof. (i) is immediate since ω is bounded on compact subsets of G by Lemma
1.3.3.

(ii) By (i), Cc(G) ⊆ L1(G, ω). To show that Cc(G) is dense in L1(G, ω), let
f ∈ L1(G, ω) and ε > 0 be given. Since fω ∈ L1(G), there exists h ∈ Cc(G)
such that ‖h− fω‖1 ≤ ε. Let S denote the compact support of h and observe
that ω(x) ≥ δ for some δ > 0 and all x ∈ S (Lemma 1.3.3). Since ω is bounded
on S, ω|S ∈ L1(S) and hence there exists a continuous function η : S → R

such that η(x) ≥ δ for all x ∈ S and
∫

S

|η(x) − ω(x)|dx ≤ εδ

‖h‖∞
.

Now define a function g on G by g(x) = h(x)/η(x) for x ∈ S and g(x) = 0
for x �∈ S. Since 1/η(x) ≤ 1/δ for all x ∈ S, it is easily verified that g is
continuous on G. Thus g ∈ Cc(G) and
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‖g − f‖1,ω =
∫

S

ω(x)|g(x) − f(x)|dx +
∫

G\S

ω(x)|f(x)|dx.

We estimate the first integral on the right as follows:
∫

S

ω(x)|g(x) − f(x)|dx ≤
∫

S

ω(x)
∣

∣

∣

∣

h(x)
η(x)

− h(x)
ω(x)

∣

∣

∣

∣

dx

+
∫

S

ω(x)
∣

∣

∣

∣

h(x)
ω(x)

− f(x)
∣

∣

∣

∣

dx

=
∫

S

h(x)
η(x)

|ω(x) − η(x)| dx

+
∫

S

|h(x) − ω(x)f(x)|dx

≤ ‖h‖∞
δ

∫

S

|ω(x) − η(x)|dx

+
∫

S

|h(x) − ω(x)f(x)|dx

≤ ε +
∫

S

|h(x) − ω(x)f(x)|dx.

It follows that

‖g − f‖1,ω ≤ ε +
∫

S

|h(x) − ω(x)f(x)|dx +
∫

G\S

ω(x)|f(x)|dx

= ε +
∫

G

|h(x) − ω(x)f(x)|dx ≤ 2ε.

This shows that Cc(G) is dense in L1(G, ω).

Lemma 1.3.6. Let ω be a weight on G and f ∈ L1(G, ω).

(i) For every x ∈ G, Lxf ∈ L1(G, ω) and ‖Lxf‖1,ω ≤ ω(x)‖f‖1,ω.
(ii) The map x → Lxf from G into L1(G, ω) is continuous.

Proof. (i) follows simply from submultiplicativity of ω:

‖Lxf‖1,ω =
∫

G

|f(x−1t)|ω(t)dt

=
∫

G

|f(x−1t)|ω(x−1t)
ω(t)

ω(x−1t)
dt

≤ ω(x)
∫

G

|f(x−1t)|ω(x−1t)dt

= ω(x)‖f‖1,ω.

(ii) Assume first that f ∈ Cc(G) with support S, say. Let x ∈ G and
choose a compact neighbourhood K of x in G. Let
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C = sup{ω(s) : s ∈ KS} < ∞.

Then, for y ∈ K,

‖Lyf − Lxf‖1,ω =
∫

KS

|f(y−1t) − f(x−1t)|ω(t)dt

≤ C

∫

KS

|f(y−1t) − f(x−1t)|dt

= C‖Lyf − Lxf‖1,

which tends to zero as y → x.
Finally, let f be an arbitrary element of L1(G, ω) and ε > 0. By Lemma

1.3.5 there exists g ∈ Cc(G) such that ‖f − g‖1,ω ≤ ε. Then, for all x and y
in G,

‖Lyf − Lxf‖1,ω ≤ (‖Ly‖ + ‖Lx‖)‖f − g‖1,ω + ‖Lyg − Lxg‖1,ω

≤ ε(ω(y) + ω(x)) + ‖Lyg − Lxg‖1,ω.

Since ω is locally bounded, the preceding paragraph finishes the proof.

Using Lemma 1.3.6 and the local boundedness of ω, it follows easily that
the approximate identity of L1(G) specified above also forms a bounded ap-
proximate identity for L1(G, ω). If ω is bounded away from zero, then L1(G, ω)
is a subalgebra of L1(G), whereas if ω is bounded, then L1(G) is a subalgebra
of L1(G, ω). In particular, if G is compact, then L1(G, ω) = L1(G) as algebras.

It follows readily from the corresponding fact for L1(G) that the dual
space of L1(G, ω) equals L∞(G, ω), formed by all complex-valued measur-
able functions g on G such that g/ω ∈ L∞(G) and equipped with the norm
‖g‖∞,ω = ‖g/ω‖∞. So the continuous linear functionals on L1(G, ω) are pre-
cisely those of the form f →

∫

G f(x)g(x)dx, where g ∈ L∞(G, ω).

1.4 Ideals and multiplier algebras

In this section we study ideals of normed algebras and introduce the concept
of a multiplier algebra. As examples, we describe all the closed ideals of C0(X)
and the multiplier algebras of C0(X) and L1(G).

Definition 1.4.1. Let A be a complex algebra and I an ideal of A. Then I
is called modular, if the quotient algebra A/I is unital, that is, there exists
u ∈ A such that the two sets

A(1 − u) := {x − xu : x ∈ A} and (1 − u)A := {x − ux : x ∈ A}

are both contained in I. Such an element u is called an identity modulo I.
The ideal I is said to be a maximal modular ideal if it is modular and also a
maximal proper ideal.
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Every ideal containing a modular ideal is itself modular. Therefore an ideal
I of A is a maximal modular ideal if and only if it is maximal within the set
of all modular proper ideals. We henceforth denote by Max(A) the set of all
maximal modular ideals of A.

Lemma 1.4.2. Every proper modular ideal is contained in a maximal modular
ideal.

Proof. Let I be a proper modular ideal and let u ∈ A be an identity modulo
I. Let L be the set of all ideals L of A such that I ⊆ L and u �∈ L. Then L
is nonempty since I ∈ L. We order L by inclusion and show that L satisfies
the hypothesis of Zorn’s lemma. Thus let K be a totally ordered subset of L
and put L =

⋃

{K : K ∈ K}. Then u �∈ L, and L is an ideal since K is totally
ordered. So L ∈ L and L is an upper bound for K. Hence, by Zorn’s lemma,
L has a maximal element M . Also, if J is a proper ideal containing M , then
u �∈ J since otherwise x = (x − ux) + ux ∈ M + J = J for all x ∈ A. Thus
J ∈ L and hence M = L. So M ∈ Max(A). �	

Remark 1.4.3. Suppose that A is commutative and has an identity e. Then
an element x ∈ A is invertible if and only if x �∈ M for every M ∈ Max(A).
Indeed, x �∈ G(A) if and only if Ax is a proper ideal, and by the preceding
lemma this is equivalent to Ax ⊆ M for some M ∈ Max(A).

Lemma 1.4.4. Let A be a normed algebra and I a closed ideal in A. Then
A/I, equipped with the quotient norm, is a normed algebra. If A is complete,
then so is A/I.

Proof. Because A/I, with the quotient norm, is a normed space and com-
plete whenever A is, it only remains to observe that the quotient norm is
submultiplicative. Now, for x, y ∈ A,

‖(x + I)(y + I)‖ = ‖xy + I‖ = inf
z∈I

‖xy + z‖

≤ inf
a,b∈I

‖(x + a)(y + b)‖

≤ inf
a,b∈I

‖x + a‖ · ‖y + b‖

= ‖x + I‖ · ‖y + I‖,

as required. �	

Lemma 1.4.5. Let A be a Banach algebra and I a proper modular ideal of
A. If u ∈ A is an identity modulo I, then

I ∩ {x ∈ A : ‖x − u‖ < 1} = ∅.

In particular, I is also a proper ideal, and every maximal modular ideal of A
is closed in A.
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Proof. Let A′ be defined to be A if A has an identity e and A′ = Ae, the
unitisation of A, otherwise. If x ∈ A is such that ‖x−u‖ < 1, then e− (u−x)
is invertible in A′ by Lemma 1.2.6. Write (e − (u − x))−1 = y + λe, where
y ∈ A and λ ∈ C. Then

e = λe + y − λu − yu + λx + yx.

Towards a contradiction, assume that x ∈ I. If e ∈ A, then

e = λe − (λe)u + y − yu + (λe + y)x ∈ I,

which is impossible. If e �∈ A, then

(1 − λ)e = y − λu − yu + λx + yx ∈ A,

which forces λ = 1 and u = y − yu + x + yx ∈ I, a contradiction. Thus x
cannot be contained in I. �	

As an application of Urysohn’s lemma, we now determine all the closed
ideals of C0(X).

Theorem 1.4.6. Let X be a locally compact Hausdorff space, and for each
subset E of X let

I(E) = {f ∈ C0(X) : f(x) = 0 for all x ∈ E}.

Then the map E → I(E) is a bijection between the collection of nonempty
closed subsets of X and the proper closed ideals of C0(X). Moreover, I(E) is
a modular ideal if and only if E is compact, and I(E) ∈ Max(C0(X)) if and
only if E is a singleton.

Proof. It is clear that I(E) is a closed ideal of C0(X). Since, given any point
x ∈ X , there exists f ∈ C0(X) such that f(x) �= 0, it follows that I(E) is
proper whenever E �= ∅. Moreover, if E is a closed subset of X and x ∈ X \E,
then by Urysohn’s lemma there exists f ∈ C0(X) such that f |E = 0 and
f(x) �= 0. This in particular implies that the assignment E → I(E) is injective.

Now let I be a proper closed ideal and set

E = {x ∈ X : f(x) = 0 for all f ∈ I}.

Then E is a closed subset of X and I ⊆ I(E). To prove that actually I = I(E),
we show first that every g ∈ Cc(G) with E ∩ supp g = ∅ belongs to I. To that
end, let C be any compact subset of X with C ∩ E = ∅. For every x ∈ C
there exists hx ∈ I such that hx(x) �= 0. Then |hx|2 ∈ I, |hx|2 ≥ 0 and
|hx|2(x) > 0. Because C is compact, there exists a finite subset F of C such
that the function h defined by

h(y) =

(

∑

x∈F

hx · hx

)

(y) =
∑

x∈F

|hx|2(y), y ∈ X,
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is strictly positive on C. Note that h ∈ I.
Now, let J be the set of all g ∈ Cc(X) such that E ∩ supp g = ∅. By what

we have just seen, for any g ∈ J there exists h ∈ I such h(y) > 0 for all
y ∈ supp g. Define a function f on X by f(x) = 0 for x ∈ X \ supp g and
f(x) = g(x)/h(x) for x ∈ supp g. It is easily verified that f is continuous.
Thus f ∈ C0(X) and g = fh ∈ I. This shows that J ⊆ I, as announced
above.

On the other hand, J is dense in I(E). To see this, let f ∈ I(E) and ε > 0
be given and let C = {x ∈ X : |f(x)| ≥ ε}. Then C is compact and C∩E = ∅.
Again, by Urysohn’s lemma, there exists h ∈ Cc(X) such that h(X) ⊆ [0, 1],
h|C = 1 and supph ⊆ X \ E. Then g = fh ∈ J and ‖f − g‖∞ ≤ ε.

Since I is closed, combining what we have shown yields that

I(E) ⊆ J ⊆ I = I ⊆ I(E),

so that I(E) = I. Clearly, E �= ∅ since otherwise Cc(X) ⊆ I, whence I =
C0(X).

Finally, if E is compact then there exists u ∈ C0(X) with u(x) = 1 for
all x ∈ E, and this shows that C0(X)(1 − u) ⊆ I(E). Conversely, if I(E) is
modular, there exists u ∈ C0(X) such that C0(X)(1−u) ⊆ I(E). This implies
that u = 1 on E and hence E is compact since u ∈ C0(X). The remaining
assertion concerning maximal modular ideals is now obvious. �	

Let G be a locally compact group. The closed ideals of L1(G) turn out to
be nothing but the closed translation invariant subspaces of L1(G).

Proposition 1.4.7. A closed linear subspace I of L1(G) is an ideal in L1(G)
if and only if I is two-sided translation invariant.

Proof. Suppose that I is two-sided translation invariant. We have to show
that g ∗ f ∈ I and f ∗ g ∈ I for each f ∈ I and g ∈ L1(G). Let ϕ ∈ L∞(G) be
such that

∫

G
f(x)ϕ(x)dx = 0 for all f ∈ I. Then, for f ∈ I and any g ∈ L1(G),

∫

G

(g ∗ f)(x)ϕ(x)dx =
∫

G

ϕ(x)
(∫

G

g(xy)f(y−1)dy

)

dx

=
∫

G

ϕ(x)
(∫

G

g(y)f(y−1x)dy

)

dx

=
∫

G

g(y)
(∫

G

Lyf(x)ϕ(x)dx

)

= 0.

Since L1(G)∗ = L∞(G), the Hahn–Banach theorem implies that g ∗ f ∈ I for
all f ∈ I and g ∈ L1(G). Thus I is a left ideal, and using the right translation
invariance of I, it is shown in the same way that I is a right ideal.

Conversely, let I be a closed ideal of L1(G) and x ∈ G. Let V be a
symmetric compact neighbourhood of e in G and let |V | denote the Haar
measure of V . Then
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‖Lxf − |V |−1(1xV ∗ f)‖1 =
∫

G

|V |−1

∣

∣

∣

∣

∫

V

f(x−1y)ds −
∫

V

f(s−1x−1y)ds

∣

∣

∣

∣

dy

≤ |V |−1

∫

V

(∫

G

|f(x−1y) − f(s−1x−1y)|dy

)

ds

= |V |−1

∫

V

‖Lxf − Ls(Lxf)‖1ds

≤ sup
s∈V

‖Lsf − Ls(Lxf)‖1.

The map s → Lsg from G into L1(G) is continuous for any g ∈ L1(G). Thus
for every ε > 0 there exists V such that

sup
s∈V

‖Lsf − Ls(Lxf)‖1 ≤ ε.

As I is a closed ideal, it follows that Lxf ∈ I. Similarly, it is shown that I is
right translation invariant. �	

The assertion of Proposition 1.4.7 also holds for Beurling algebras L1(G, ω).
The proof is as for L1(G) (Exercise 1.6.38). The following two lemmas concern
the existence of bounded approximate identities in ideals of normed algebras.

Lemma 1.4.8. Let I be a closed ideal of a normed algebra A.

(i) Suppose that A has a (bounded) left approximate identity. Then A/I has
a (bounded) left approximate identity.

(ii) Suppose that I and A/I have left approximate identities with bounds M
and N , respectively. Then A has a left approximate identity with bound
M + N + MN.

Proof. (i) Clearly, if (eλ)λ is a (bounded) left approximate identity for A, then
(eλ + I)λ is a (bounded) left approximate identity for A/I.

(ii) Let x1, . . . , xn ∈ A and ε > 0. There exist u ∈ A with ‖u‖ ≤ M and
y1, . . . , yn ∈ I such that

‖xj − uxj + yj‖ ≤ ε

2(1 + N)
, j = 1, . . . , n.

Moreover, there exists v ∈ I such that ‖v‖ ≤ N and ‖yj − vyj‖ ≤ ε/2 for
1 ≤ j ≤ n. Let w = u + v − vu; then ‖w‖ ≤ M + N + MN and

‖xj − wxj‖ ≤ ‖(xj − uxj + yj) − v(xj − uxj + yj)‖ + ‖yj − vyj‖

≤ (1 + N)ε
2(1 + N)

+
ε

2
= ε.

The statement now follows from Proposition 1.1.10. �	

Lemma 1.4.9. Let I and J be closed ideals with bounded left approximate
identities. Then the ideals I ∩J and I + J both have bounded left approximate
identities.
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Proof. Let (uλ)λ and (vμ)μ be bounded left approximate identities for I and
J , respectively. Then (uλvμ)λ,μ is a bounded left approximate identity for
I ∩ J since uλvμ ∈ I ∩ J and

‖x − uλvμx‖ ≤ ‖x − uλx‖ + ‖uλ‖ · ‖x − vμx‖ → 0

for every x ∈ I ∩ J .
Let wλ,μ = uλ + vμ − vμuλ. Then, for x ∈ I and y ∈ J,

‖(x + y) − wλ,μ(x + y)‖ ≤ ‖x − uλx‖ + ‖y − vμy‖
+‖vμ‖ · ‖x − uλx‖ + ‖uλy − vμuλy‖.

This shows that (wλ,μ)λ,μ is a bounded left approximate identity for I +J . A
simple approximation argument shows that the same is true for I + J. �	

Of course, there are obvious analogues of Lemmas 1.4.8 and 1.4.9 for right
approximate identities. We now introduce the important concept of multiplier
algebra.

Definition 1.4.10. A Banach algebra A is said to be faithful if for every
a ∈ A, the condition Aa = {0} implies a = 0. A mapping T : A → A is called
a multiplier of A if x(Ty) = (Tx)y holds for all x, y ∈ A. Let M(A) denote
the collection of all multipliers of A. The next proposition shows that M(A)
is a commutative Banach algebra, which is called the multiplier algebra of A.

Proposition 1.4.11. Let A be a Banach algebra and suppose that A is faith-
ful. Then M(A) is a commutative closed subalgebra of B(A) with identity.

Proof. For T ∈ M(A), x, y, z ∈ A, and α, β ∈ C, we have

xT (αy + βz) = (Tx)(αy + βz) = α(Tx)y + β(Tx)z
= x(αTy + βTz).

Since A is faithful, this implies that T (αy + βz) = αTy + βTz, so T is linear.
Moreover, if T ∈ M(A), y, z ∈ A, and (yn)n is a sequence in A such that

yn → y and Tyn → z, then for each x ∈ A,

‖xz − x(Ty)‖ ≤ ‖x‖ · ‖z − Tyn‖ + ‖(Tx)yn − (Tx)y‖
≤ ‖x‖ · ‖z − Tyn‖ + ‖Tx‖ · ‖yn − y‖.

Thus xz = x(Ty) for all x ∈ A and hence, as A is faithful, z = Ty. By the
closed graph theorem, T is a bounded linear operator.

If (Tn)n is a sequence in M(A) and T ∈ B(A) is such that ‖Tn − T ‖ → 0,
then for all x, y ∈ A,

‖x(Ty) − (Tx)y‖ ≤ ‖x(Ty)− x(Tny)‖ + ‖(Tnx)y − (Tx)y‖
≤ 2‖x‖ · ‖y‖ · ‖Tn − T ‖,
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and so x(Ty) = (Tx)y. Thus M(A) is closed in B(A).
Finally, to show that M(A) is commutative, observe first that if T ∈ M(A)

and x, y, z ∈ A, then

z(x(Ty)) = z((Tx)y) = ((Tz)x)y = (Tz)(xy) = zT (xy),

and hence faithfulness implies x(Ty) = (Tx)y = T (xy) for all x, y ∈ A.
Therefore, if T, S ∈ M(A), then

(T (Sx))y = T ((Sx)y) = (TS)(xy) = T (x(Sy)) = x((TS)y)

and also
x((ST )y) = (Sx)(Ty) = (T (Sx))y

for all x, y ∈ A. Thus (ST )y = (TS)y, and hence M(A) is a commutative
subalgebra of B(A). �	

It is easy to see that, with minor modifications of the proof, Proposition
1.4.11 remains valid when the hypothesis that Aa = {0} implies a = 0 is
replaced by aA = {0} implies a = 0.

Suppose that A is commutative and, for x ∈ A, define the multiplication
operator Lx : A → A by Lxy = xy. Clearly, Lx ∈ M(A). If A has an identity
e, then there are no other multipliers because every T ∈ M(A) satisfies

Tx = eTx = (Te)x = LTex

for all x ∈ A, which shows that T = LTe. However, when A is nonunital,
M(A) can be much larger. For instance, if A is an ideal in a larger algebra B,
then for every b ∈ B, Lb|A is a multiplier of A.

Theorem 1.4.12. Let A be a faithful commutative Banach algebra. Then the
mapping L : x → Lx is a continuous isomorphism of A onto the ideal L(A) =
{Lx : x ∈ A} of M(A). If A has an approximate identity bounded by C > 0,
then 1/C ≤ ‖L‖ ≤ 1.

Proof. It is obvious that x → Lx is a norm decreasing homomorphism of A
into M(A). The range of A is an ideal of M(A) since, for T ∈ M(A) and
x, y ∈ A,

(LxT )y = x(Ty) = (Tx)y = LTxy.

Let (eα)α be an approximate identity for A with norm bound C > 0. Then

‖Lx‖ = sup{‖xy‖ : y ∈ A, ‖y‖ ≤ 1} ≥ 1
C

sup
α

‖xeα‖ ≥ ‖x‖
C

for each x ∈ A, and so ‖L‖ ≥ 1
c . �	

We now identify the multiplier algebra in two concrete cases.
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Example 1.4.13. Let X be a locally compact Hausdorff space. We show that
the multiplier algebra of C0(X) can be canonically identified with Cb(X).

Clearly, any f ∈ Cb(X) defines a multiplier Tf of C0(X) by Tfg = fg, g ∈
C0(X), and ‖Tf‖ ≤ ‖f‖∞. Conversely, let T be an arbitrary multiplier of
C0(X). For every x ∈ X there exists g ∈ C0(X) such that g(x) �= 0, and for
any two such functions g1, g2, we have

Tg1(x)
g1(x)

=
Tg2(x)
g2(x)

since g2(Tg1) = (Tg2)g1. Thus we can define a function f on X by f(x) =
Tg(x)/g(x), where g ∈ C0(X) is such that g(x) �= 0. This function f is
continuous on X because f(y) = Tg(y)/g(y) for all y in a neighbourhood of
x. The function f also satisfies Tg(x) = f(x)g(x) for all g ∈ C0(X) and x ∈ X
since (Tg(x))2 = g(x)(T 2g)(x) = 0 whenever g(x) = 0. Moreover, ‖f‖∞ ≤
‖T ‖. In fact, given x ∈ X , by Urysohn’s lemma there exists g ∈ C0(X) such
that g(x) = 1 = ‖g‖∞, and this implies

|f(x)| = |Tg(x)| ≤ ‖Tg‖∞ ≤ ‖T ‖ · ‖g‖∞ = ‖T ‖.
It follows that the mapping f → Tf provides an isometric algebra isomorphism
between Cb(X) and the multiplier algebra of C0(X).

Example 1.4.14. Let G be a locally compact Abelian group. We determine
the multiplier algebra of L1(G). Since L1(G) is an ideal in M(G), it is immedi-
ate that for every μ ∈ M(G), the convolution operator Tμ : L1(G) → L1(G),
defined by Tμf = μ∗ f, f ∈ L1(G), is a multiplier of L1(G) with ‖Tμ‖ ≤ ‖μ‖.

It is less evident that every multiplier of L1(G) arises in this way. To see
this, let T ∈ M(L1(G)) be given and view T as a continuous linear mapping
from L1(G) into M(G). Let (uα)α be an approximate identity for L1(G) with
‖uα‖1 = 1 for all α, and consider the bounded net (Tuα)α. Now M(G) =
C0(G)∗ and the ball of radius ‖T ‖ in M(G) is w∗-compact by the Banach-
Alaoglu theorem. We can therefore assume that the net (Tuα)α converges in
the w∗-topology to some μ ∈ M(G) for which ‖μ‖ ≤ ‖T ‖. We claim that
T = Tμ. Once this is shown, it also follows that ‖Tμ‖ = ‖μ‖.

Since Cc(G) is dense in L1(G) it suffices to show that T (f) = μ ∗ f for all
f ∈ Cc(G). Let 〈g, ν〉 =

∫

G
g(x)dν(x) for g ∈ C0(G) and ν ∈ M(G). For all

f, g ∈ Cc(G) we then have

〈g, T (uα ∗ f)〉 = 〈g, f ∗ T (uα)〉 = 〈f∗ ∗ g, T (uα)〉,
which converges to 〈f∗ ∗ g, μ〉 = 〈g, μ ∗ f〉. On the other hand,

|〈g, T (uα ∗ f)〉 − 〈g, T (f)〉| ≤ ‖g‖∞‖T ‖ · ‖uα ∗ f − f‖1,

which tends to zero. It follows that

〈g, T (f)〉 = 〈g, μ ∗ f〉
for all f and g in Cc(G). This implies that T (f) = μ∗ f for all f ∈ Cc(G) and
hence T = Tμ.
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1.5 Tensor products of Banach algebras

The formation of tensor products, notably the projective and the injective
tensor product, of two Banach spaces is one of the most important processes to
construct new Banach spaces. In this section we consider these constructions
in the context of Banach algebras.

Proposition 1.5.1. Let A and B be algebras. On the vector space A⊗B there
exists a unique product with respect to which A⊗B is an algebra, the algebraic
tensor product and which satisfies (a⊗ b)(c⊗ d) = ac⊗ bd for all a, c ∈ A and
b, d ∈ B.

Proof. Given a ∈ A and b ∈ B, there exists a unique linear operator λ(a, b)
on A ⊗ B such that

λ(a, b)(c ⊗ d) = ac ⊗ bd (c ∈ A, d ∈ B).

The mapping (a, b) → λ(a, b) is bilinear. Thus there exists a unique linear
mapping μ from A ⊗ B into the space of linear mappings from A ⊗ B into
itself such that

μ(a ⊗ b) = λ(a, b)

for all a ∈ A and b ∈ B. The required product on A⊗B can then be defined,
for u, v ∈ A ⊗ B, by

uv = μ(u)(v).

It is straightforward to check that this is a product on A⊗B, and it satisfies

(a ⊗ b)(c ⊗ d) = μ(a ⊗ b)(c ⊗ d) = λ(a, b)(c ⊗ d) = ac ⊗ bd

for all a, c ∈ A and b, d ∈ B. Finally, it is clear that this last equation deter-
mines the product uniquely. �	

Let A and B be Banach spaces and let π denote the projective tensor norm
on A⊗B and A ̂⊗πB the projective tensor product, the completion of A⊗B
with respect to π (Appendix A.2). Recall for later use that every element x
of A ̂⊗πB can be written as a series x =

∑∞
j=1 aj ⊗ bj , where aj ∈ A, bj ∈ B,

and
∑∞

j=1 ‖aj‖ · ‖bj‖ < ∞ (Proposition A.2.9). Now assume that A and B
are Banach algebras.

Lemma 1.5.2. The projective tensor norm on A ⊗ B is an algebra norm.

Proof. Let x =
∑n

i=1 ai ⊗ bi and y =
∑m

j=1 cj ⊗ dj . Then

xy =
n
∑

i=1

m
∑

j=1

aicj ⊗ bidj

and
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n
∑

i=1

m
∑

j=1

‖aicj‖ · ‖bidj‖ ≤
(

n
∑

i=1

‖ai‖ · ‖bi‖
)(

m
∑

j=1

‖cj‖ · ‖dj‖
)

.

Taking the infima over all such representations of x and y, we conclude that
π(xy) ≤ π(x)π(y). �	

Now let A and B be Banach algebras. By Lemma 1.5.2 we can extend the
product on A⊗B to A ̂⊗πB. Then A ̂⊗πB becomes a Banach algebra, which
is commutative if and only if both A and B are commutative. Moreover, if A
and B are ∗-algebras, then A ̂⊗πB is a Banach ∗-algebra for the involution
defined by (a ⊗ b)∗ = a∗ ⊗ b∗ for a ∈ A and b ∈ B.

In passing we insert a simple result concerning the existence of bounded
approximate identities in A ̂⊗πB. We formulate it in terms of left approximate
identities, but of course the analogous assertions are true for right and two-
sided approximate identities.

Lemma 1.5.3. Let A and B be Banach algebras having left approximate iden-
tities bounded by M and N , respectively. Then A ̂⊗πB has a left approximate
identity bounded by MN .

Proof. Let (uλ)λ and (vμ)μ be left approximate identities bounded M and N
of A and B, respectively. Let x =

∑∞
j=1 aj⊗bj ∈ A ̂⊗πB such that

∑∞
j=1 ‖aj‖·

‖bj‖ < ∞, and let ε > 0. Choose n ∈ N with the property that ‖x−
∑n

j=1 aj ⊗
bj‖ ≤ ε and choose R ≥ 1 so that ‖aj‖, ‖bj‖ ≤ R for 1 ≤ j ≤ n. There exist λ0

and μ0 such that ‖aj−uλaj‖ ≤ ε/(nR) for all λ ≥ λ0 and ‖bj−vμbj‖ ≤ ε/(nR)
for all μ ≥ μ0 and all 1 ≤ j ≤ n. It follows that

‖x − (uλ ⊗ vμ)x‖ ≤ ε(1 + MN) +

∥

∥

∥

∥

∥

n
∑

j=1

aj ⊗ bj − (uλ ⊗ vμ)
n
∑

j=1

aj ⊗ bj

∥

∥

∥

∥

∥

≤ ε(1 + MN) +
n
∑

j=1

‖aj − uλaj‖ · ‖bj‖

+
n
∑

j=1

‖aj‖ · ‖bj − vμbj‖

+
n
∑

j=1

‖aj − uλaj‖ · ‖bj − vμbj‖

≤ ε(1 + MN)2ε + n
( ε

nR

)2

≤ ε(4 + MN).

This shows that the net (uλvμ)λ,μ is a left approximate identity for A ̂⊗πB
bounded by MN . �	
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Let A be a Banach algebra and G a locally compact group with left Haar
measure dx. It is easily verified that L1(G, A) is a Banach algebra with con-
volution product given by

(f ∗ g)(x) =
∫

G

f(xy)g(y−1)dy

for f, g ∈ L1(G), and almost all x ∈ G. Moreover, if A is a Banach ∗-algebra, it
is straightforward to check that f∗(x) = Δ(x−1)f(x−1)∗ defines an isometric
involution on L1(G, A), so that L1(G, A) is a Banach ∗-algebra as well.

We now realize L1(G, A) as the projective tensor product of L1(G) and A.

Proposition 1.5.4. Let G be a locally compact group and A a Banach algebra.
For f ∈ L1(G) and a ∈ A define fa ∈ L1(G, A) by fa(x) = f(x)a for
x ∈ G. Then there is an isometric algebra isomorphism φ of L1(G) ̂⊗πA onto
L1(G, A) such that φ(f ⊗ a) = fa for all f ∈ L1(G) and a ∈ A.

Proof. The mapping (f, a) → fa from L1(G) × A into L1(G, A) is bilinear.
Hence there exists a unique linear mapping

φ : L1(G) ⊗ A → L1(G, A)

such that φ(f ⊗ a)(x) = f(x)a for all f ∈ L1(G), a ∈ A and almost all x ∈ G.
The map φ is a homomorphism since

φ((f ∗ g) ⊗ (ab))(x) =
(∫

G

f(xy)g(y−1)dy

)

ab

=
∫

G

(f(xy)a)(g(y−1)b)dy

=
∫

G

φ(f ⊗ a)(xy)φ(g ⊗ b)(y−1)dy

= (φ(f ⊗ a) ∗ φ(g ⊗ b))(x),

for all f, g ∈ L1(G), a, b ∈ A and almost all x ∈ G. For u =
∑n

i=1 fi ⊗ ai ∈
L1(G) ⊗ A it follows that

‖φ(u)‖1 =

∥

∥

∥

∥

∥

n
∑

i=1

fiai

∥

∥

∥

∥

∥

=
∫

G

∥

∥

∥

∥

∥

n
∑

i=1

fiai(x)

∥

∥

∥

∥

∥

dx

=
∫

G

∥

∥

∥

∥

∥

n
∑

i=1

fi(x)ai

∥

∥

∥

∥

∥

dx ≤
∫

G

n
∑

i=1

|fi(x)| · ‖ai‖dx

=
n
∑

i=1

‖fi‖1‖ai‖.

This implies that ‖φ(u)‖1 ≤ π(u). Thus φ extends uniquely to a norm de-
creasing homomorphism, also denoted φ, from L1(G) ̂⊗πA into L1(G, A).
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Now, let f ∈ L1(G, A) be a Bochner integrable simple function,

f(x) =
n
∑

j=1

1Mj (x)aj

say, where aj ∈ A and the Mj are measurable and pairwise disjoint subsets
of G, 1 ≤ j ≤ n. Let

u =
n
∑

j=1

1Mj ⊗ aj ∈ L1(G) ⊗ A.

Then φ(u) = f and

π(u) ≤
n
∑

j=1

‖1Mj‖1‖aj‖ =
n
∑

j=1

|Mj| · ‖aj‖ = ‖f‖1 = ‖φ(u)‖1.

The space of integrable simple functions is dense in L1(G, A). Thus it follows
that φ is an isometric isomorphism from L1(G) ̂⊗πA onto L1(G, A). �	

If G and H are locally compact groups, their direct product G × H will
be equipped with the product of left Haar measures of G and H .

Proposition 1.5.5. Let G and H be locally compact groups. Then there exists
an isometric ∗-isomorphism φ from L1(G) ̂⊗πL1(H) onto L1(G×H) such that

φ(f ⊗ g)(x, y) = f(x)g(y)

for all f ∈ L1(G), g ∈ L1(H), and almost all x ∈ G and y ∈ H.

Proof. We define a linear mapping ψ from L1(G × H) onto L1(G, L1(H))
by [ψ(F )(x)](y) = F (x, y). It is easy to check that ψ(F ∗) = ψ(F )∗. Using
vector-valued integration, we have

[ψ(F1 ∗ F2)(x)](y) =
∫

G×H

F1((x, y)(s, t)−1)F2(s, t)d(s, t)

=
∫

G

∫

H

[ψ(F1)(xs−1)](yt−1)[ψ(F2)(s)](t)dtds

=
∫

G

[ψ(F1)(xs−1) ∗ ψ(F2)(s)](y)ds

=
(∫

G

[ψ(F1) ∗ ψ(F2)](x)
)

(y)

for F1, F2 ∈ L1(G × H). Moreover,

‖ψ(F )‖1 =
∫

G

‖F (x, ·)‖1dx =
∫

G

∫

H

|F (x, y)|dydx = ‖F‖1.
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In Proposition 1.5.4 we have seen that there exists an isometric isomorphism
ρ from L1(G) ̂⊗πL1(H) to L1(G, L1(H)) satisfying ρ(f ⊗ g)(x) = f(x)g for
all f ∈ L1(G), g ∈ L1(H), and almost all x ∈ G. Clearly, ρ preserves the
involution. Since ρ is surjective and the range of ψ contains ρ(L1(G)⊗L1(H)),
ψ is also surjective. So

φ = ψ−1 ◦ ρ : L1(G) ̂⊗πL1(H) → L1(G × H)

is the desired isometric ∗-isomorphism. �	

It does not seem to be clear at all under what conditions the injective
norm on the algebraic tensor product of two Banach algebras A and B is an
algebra norm. The following proposition in particular shows that this is the
case when B = C0(X) for some locally compact Hausdorff space X .

Proposition 1.5.6. Let X be a locally compact Hausdorff space and A a Ba-
nach algebra. Then C0(X) ̂⊗εA is isometrically isomorphic to C0(X, A).

Proof. For f ∈ C0(X) and a ∈ A, fa ∈ C0(X, A) is defined by fa(x) =
f(x)a, x ∈ X . The mapping (f, a) → fa from C0(X) × A into C0(X, A) is
bilinear. Hence there exists a unique linear map φ : C0(X) ⊗ A → C0(X, A)
such that φ(f ⊗ a)(x) = f(x)a for all f ∈ C0(X), x ∈ X, a ∈ A. Clearly, φ is
a homomorphism. For u =

∑n
i=1 fi ⊗ ai, fi ∈ C0(X), ai ∈ A, we have

‖φ(u)‖ = sup{‖φ(u)(x)‖ : x ∈ X}

= sup

{∥

∥

∥

∥

∥

n
∑

i=1

fi(x)ai

∥

∥

∥

∥

∥

: x ∈ X

}

= sup

{∣

∣

∣

∣

∣

g

(

n
∑

i=1

fi(x)ai

)∣

∣

∣

∣

∣

: g ∈ A∗
1, x ∈ X

}

= sup

{∥

∥

∥

∥

∥

n
∑

i=1

g(ai)fi

∥

∥

∥

∥

∥

∞

: g ∈ A∗
1

}

= sup

{∣

∣

∣

∣

∣

n
∑

i=1

g(ai)μ(fi)

∣

∣

∣

∣

∣

: g ∈ A∗
1, μ ∈ C0(X)∗1

}

= ε
(

n
∑

i=1

fi ⊗ ai

)

.

Thus φ is an isometry. It remains to show that φ(C0(X) ⊗ A) is dense in
C0(X, A). Since Cc(X, A) is dense in C0(X, A), we can assume that X is
compact. Let f ∈ C(X, A) and ε > 0 be given. Choose x1, . . . , xn ∈ X such
that for each x ∈ X there exists j so that ‖f(x)− f(xj)‖ < ε. For 1 ≤ j ≤ n,
define Vj ⊆ X by Vj = {x ∈ X : ‖f(x)−f(xj)‖ < ε}. Then the sets V1, . . . , Vn

form an open cover of X . Because X is a compact Hausdorff space, there is
a partition of unity subordinate to this cover. That is, there are continuous
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functions hj : X → [0, 1], 1 ≤ j ≤ n, satisfying hj(x) = 0 for x �∈ Vj and
∑n

j=1 hj(x) = 1 for all x ∈ X. For each x ∈ X, follows that
∥

∥

∥

∥

∥

f(x) − φ

(

n
∑

j=1

hj ⊗ f(xj)

)

(x)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n
∑

j=1

hj(x)(f(x) − f(xj))

∥

∥

∥

∥

∥

≤
∑

hj(x)
∥

∥f(x) − f(xj)
∥

∥ < ε,

where the last summation extends over all 1 ≤ j ≤ n such that x ∈ Vj . This
shows that the image of C0(X) ⊗ A is dense in C0(X, A). �	

Let X and Y be locally compact Hausdorff spaces. It is easy to see that
C0(X, C0(Y )) is isometrically isomorphic to C0(X × Y ) (Exercise 1.6.47).
Combining this with Proposition 1.5.6 shows that C0(X) ̂⊗εC0(Y ) is isomet-
rically isomorphic to C0(X × Y ).

1.6 Exercises

Exercise 1.6.1. A seminorm on an algebra A is a function s : A → [0,∞)
satisfying s(x + y) ≤ s(x) + s(y) and s(λx) = |λ|s(x) for all x, y ∈ A and
λ ∈ C. Suppose that s has the square property s(x2) = s(x)2, x ∈ A. Show
that

s(xy + yx) ≤ 2[s(x)2 + s(y)2 + s(x)s(y)]

for all x, y ∈ A.

Exercise 1.6.2. Let A be a commutative algebra and ‖ · ‖ a norm on A
satisfying the square property ‖x2‖ = ‖x‖2, x ∈ A. Proceed as follows to
show that ‖ · ‖ is submultiplicative.

(i) The equation 4xy = (x + y)2 − (x − y)2 implies 2‖xy‖ ≤ (‖x‖ + ‖y‖)2
for all x, y ∈ A.

(ii) Deduce that ‖xy‖ ≤ 2‖x‖ · ‖y‖ by first considering the case where
‖x‖, ‖y‖ ≤ 1.

(iii) Replace x and y by x2n

and y2n

, n ∈ N, respectively, and let n → ∞
to conclude that ‖xy‖ ≤ ‖x‖ · ‖y‖.

Exercise 1.6.3. Let A be a Banach algebra and let x and y be two commuting
idempotents in A, that is, x2 = x, y2 = y, and xy = yx. Prove that either
x = y or ‖x− y‖ ≥ 1. Find an example showing that this may fail if xy �= yx.

Exercise 1.6.4. Let Aλ, λ ∈ Λ, be a family of Banach algebras and let

A = {x = (xλ)λ ∈
∏

λ∈Λ

Aλ : sup
λ∈Λ

‖xλ‖ < ∞}.

Prove that, with componentwise algebraic operations and the norm ‖x‖ =
supλ∈Λ ‖xλ‖, A becomes a Banach algebra.
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Exercise 1.6.5. Let A be a Banach algebra and let A∗ and A∗∗ denote the
first and the second dual of A. For a, b ∈ A, f ∈ A∗, and m, n ∈ A∗∗ define
elements f · a and m · f of A∗ and mn of A∗∗ by

〈f · a, b〉 = 〈f, ab〉, 〈m · f, a〉 = 〈m, f · a〉 and 〈mn, f〉 = 〈m, n · f〉,

respectively. This product (m, n) → mn on A∗∗ is called the first Arens prod-
uct. Show that A∗∗, equipped with the first Arens product, is a Banach algebra
and that the canonical embedding i : A → A∗∗ is an isomorphism between A
and the subalgebra i(A) of A∗∗.

Exercise 1.6.6. Retain the notation of Exercise 1.6.5 and suppose that A is
commutative. Then A∗∗ need not be commutative.

(i) Show that ma = am for m ∈ A∗∗ and a ∈ A.
(ii) Show that, for fixed n ∈ A∗∗, the mapping m → mn is continuous for

the w∗-topology on A∗∗.

Exercise 1.6.7. A derivation on an algebra A is a linear mapping of A into
A such that

D(xy) = x(Dy) + (Dx)y (x, y ∈ A).

Show that a derivation D satisfies (with the convention that D0 = I) the
Leibniz rule

Dn(xy) =
n
∑

j=0

(

n

j

)

(Dn−jx)(Djy)

(n ∈ N, x, y ∈ A).

Exercise 1.6.8. Let D be a continuous derivation on a Banach algebra A.
Show that

exp D : A → A, (exp D)x =
∞
∑

n=0

1
n!

Dnx,

is a continuous automorphism of A.

Exercise 1.6.9. Show that for 1 ≤ p < ∞, lp = lp(N) with multiplication
defined by (an)n(bn)n = (anbn)n and the ‖ · ‖p-norm is a Banach algebra,
which has an unbounded, but no bounded approximate identity.

Exercise 1.6.10. Let X be a noncompact locally compact Hausdorff space
and denote by ˜X the one-point compactification of X . Show that C( ˜X) is
algebraically (though not isometrically) isomorphic to the algebra obtained
by adjoining an identity to C0(X).

Exercise 1.6.11. For 0 < α ≤ 1, let Lipα[0, 1] be the space of all continuous
complex valued functions on [0, 1] which satisfy a Lipschitz condition of order
α. That is, f ∈ C[0, 1] belongs to Lipα[0, 1] if and only if
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‖f‖α = sup
0≤t≤1

|f(t)| + sup
0≤s<t≤1

|f(s) − f(t)|
|s − t|α < ∞.

Prove that, with pointwise multiplication and the norm f → ‖f‖α, Lipα[0, 1]
is a Banach algebra.

Exercise 1.6.12. Define a convolution product on L1[0, 1] by

(f ∗ g)(t) =
∫ t

0

f(t − s)g(s)ds, f, g ∈ L1[0, 1], t ∈ [0, 1].

With this product, L1[0, 1] becomes a commutative Banach algebra, called the
Volterra algebra and denoted V . Clearly, V does not have an identity. Prove
that V has a bounded approximate identity.

Exercise 1.6.13. Let D◦ be the open unit disc. For any 1 < p < ∞, let
Hp(D◦) denote the classical Hardy space. Recall that Hp(D◦) consists of all
holomorphic functions f : D◦ → C for which the values

∫

R
|f(rz)|pdz are

bounded as r varies through 0 < r < 1. With the norm

‖f‖p =
(

1
2π

sup
0<r<1

∫ 2π

0

|f(reit)|pdt

)1/p

,

Hp(D◦) is a Banach space. Show that Hp(D◦) becomes a commutative Banach
algebra when endowed with the so-called Hadamard product. This product is
given by

(f • g)(z) =
1

2πi

∫

γr

f(w)g(zw−1)w−1dw,

where |z| < r < 1 and γr(t) = re2πit, t ∈ [0, 1]. Note that because f and g are
holomorphic on D◦, the value of this integral does not depend on the choice
of r with |z| < r < 1.

Exercise 1.6.14. Let A be a unital algebra with involution ∗ and let u be an
invertible element of A such that u∗ = u. For x ∈ A, define x̃ by x̃ = u−1x∗u.
Show that x → x̃ is an involution on A.

Exercise 1.6.15. Show that an involution can be defined on the disc algebra
A(D) by setting f∗(z) = f(z) for f ∈ A(D), z ∈ D. Verify that this involution
is isometric, but does not satisfy the C∗-condition.

Exercise 1.6.16. For z ∈ D, let ϕz ∈ A(D)∗ denote the point evaluation at
z, that is, ϕz(f) = f(z) for all f ∈ A(D). Let z, w ∈ D such that z �= w. Show
that ‖ϕz − ϕw‖A(D)∗ = 2 if and only if |z| = 1 or |w| = 1.

Exercise 1.6.17. Let A be a Banach algebra and let (xn)n be a sequence of
invertible elements of A converging to a non-invertible element. Prove that
limn→∞ ‖x−1

n ‖ = ∞.
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Exercise 1.6.18. Let A be a Banach algebra and rA : A → [0,∞), x → rA(x)
the spectral radius function. Show that rA is upper semicontinuous, and if
x ∈ A is such that rA(x) = 0, then rA is continuous at x.

Exercise 1.6.19. Let A be a Banach algebra, let x ∈ A, and let U be an
open subset of C containing σA(x). Prove that there exists δ > 0 such that
σA(y) ⊆ U for all y ∈ A with ‖y− x‖ < δ. Compare this with Exercise 1.6.18.

Exercise 1.6.20. Let A = B(l2(N)) and let T ∈ A be the unilateral shift
defined by (Tx)1 = 0 and (Tx)n = xn−1 for n ≥ 2 and x = (xn)n ∈ l2(N).
Show that σA(T ∗T ) �= σA(TT ∗).

Exercise 1.6.21. Let A be the convolution algebra l1(Z) and B the closed
algebra consisting of all x = (xn)n ∈ l1(Z) such that xn = 0 for all n < 0.
Show that σA(δ1) �= σB(δ1).

Exercise 1.6.22. Let X = {z ∈ C : 1 ≤ |z| ≤ 2} and f(z) = z, z ∈ X. Let A
be the smallest closed subalgebra of C(X) that contains 1 and f , and let B be
the smallest closed subalgebra of C(X) that contains f and 1/f . Determine
the spectra σA(f) and σB(f). Do the same when X is a circle.

Exercise 1.6.23. Let H∞(D◦) denote the algebra of all bounded holomor-
phic functions on the open unit disc D◦. Equipped with the supremum norm,
H∞(D◦) is a Banach algebra. Show that σ(f) = f(D◦) for every f ∈ H∞(D◦).

Exercise 1.6.24. Let A be a Banach algebra with identity e, and let B be a
closed subalgebra of A with e ∈ B. Suppose that A is not commutative and
B is a maximal commutative subalgebra of A. Show that σA(x) = σB(x) for
every x ∈ B.

Exercise 1.6.25. Let A be a Banach algebra with identity e and let x ∈ A
be such that x2 = x. Show that σA(x) ⊆ {0, 1} and compute the resolvent
function R(x, λ) = (λe − x)−1.

Exercise 1.6.26. Let A be a Banach algebra with identity e and B a closed
subalgebra of A containing e. Show that if x ∈ B is such that σB(x)◦ = ∅,
then σA(x) = σB(x).

Exercise 1.6.27. Let X be a locally compact Hausdorff space.
(i) Prove that σC0(X)(f) = f(X) for every f ∈ C0(X).
(ii) Show that σC0(X)(f) = f(X) for every f ∈ C0(X) if and only if X is

not σ-compact.

Exercise 1.6.28. Let A be a Banach ∗-algebra and B a C∗-algebra, and let
φ : A → B be a ∗-homomorphism. Show that φ is continuous and ‖φ‖ ≤ 1.

Exercise 1.6.29. Let G be a discrete group and 0 < p < 1. Show that lp(G)
with the convolution product is a commutative Banach algebra.
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Exercise 1.6.30. (i) Let G be nontrivial discrete group. Show that the ‖ · ‖1-
norm on the Banach ∗-algebra l1(G) fails to be a C∗-norm by considering a
linear combination of, say, three Dirac functions.

(ii) Prove the analogous statement for L1(Rn).

Exercise 1.6.31. Let n ∈ N, 1 ≤ p < ∞ and

A = {f ∈ L1(Rn) : ̂f ∈ Lp(Rn)|}.

Show that A becomes a Banach algebra under the norm ‖f‖ = ‖f‖1 + ‖ ̂f‖p.

Exercise 1.6.32. Let L1(R+) denote the subalgebra of L1(R) consisting of
all functions f such that f(t) = 0 for all t < 0. The purpose of this exercise
is to show that L1(R+) is generated by the function f defined by f(t) = e−t

for t ≥ 0 and f(t) = 0 for t < 0.
(i) Show that ̂f(y) = 1/(1 + iy) for all y ∈ R. Hence ( ̂f)(j) is a constant

multiple of ( ̂f)j+1 for all j ∈ N0.
(ii) Deduce from (i) that the n-fold convolution product fn satisfies

fn(t) = cntn−1f(t) for all t ∈ R and n ∈ N and some cn �= 0.
(iii) Let g ∈ L∞(R+) = L1(R+)∗ be such that

〈fn, g〉 =
∫ ∞

0

fn(t)g(t)dt = 0

for all n ∈ N. Define a function F on the right half plane by

F (z) =
∫ ∞

0

e−tzg(t)dt.

Then F is holomorphic and satisfies F (n)(1) = 0 for all n ∈ N0. Therefore
F (1 + iy) = 0 for all y ∈ R. Conclude that g = 0.

Exercise 1.6.33. Let k ∈ N and C = [0, 1]k ⊆ Rk and view Zk as the set of
all points in Rk with integer coordinates. For a continuous function f on Rk

define
M(f) =

∑

n∈Zk

max
x∈C

|f(x + n)|.

Let A be the set of all functions f for which M(f) < ∞. Prove that A is a
subalgebra of L1(Rk) and f → M(f) is a Banach algebra norm on A.

Exercise 1.6.34. Give an example of a weight ω on Z with the property that
if f ∈ l1(Z, ω), then the function f∗, defined by f∗(n) = f(−n), need not
belong to l1(Z, ω).

Exercise 1.6.35. Let G be a locally compact group and ω a weight function
on G. Let V be the family of all compact neighbourhoods of the identity of G
and define ω′ on G by
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ω′(x) = inf
V ∈V

{sup{ω(xy) : y ∈ V }}.

Prove that ω′ is an upper semicontinuous weight on G and that L1(G, ω) =
L1(G, ω′).

Exercise 1.6.36. Let G be a locally compact Abelian group and let ω1 and
ω2 be two weights on G such that L1(G, ω1) ⊆ L1(G, ω2). Show that there
exists a constant c > 0 such that ω2(x) ≤ c ω1(x) locally almost everywhere
on G.
(Hint: ‖f‖ = ‖f‖1,ω + ‖f‖1,ω2 defines a complete norm on L1(G, ω1).)

Exercise 1.6.37. A weight function ω on Rn is said to be of regular growth
if it satisfies the following two conditions.

(1) ω(x/t) ≤ ω(x) for all x ∈ R
n and t ∈ [1,∞).

(2) There are constants C ≥ 1 and α > 0 such that ω(tx) ≤ C tαω(x) for
all x ∈ Rn and t ∈ [1,∞).

Observe that condition (2) implies that ω(x) ≤ D ·‖x‖α whenever ‖x‖ ≥ 1,
where D = C · sup{ω(x) : ‖x‖ = 1}. Let γ be any measurable function on
Rn satisfying γ(x) ≥ 0, γ(x + y) ≤ γ(x) + γ(y) and γ(x/t) ≤ γ(x) for all
x, y ∈ Rn, t ≥ 1. Show that then ω(x) = (1 + γ(x))α, α ≥ 0, defines a weight
of regular growth on Rn.

Exercise 1.6.38. Let G be a locally compact group and ω a weight on G.
Adopt the proof of Proposition 1.4.7 to show that a closed linear subspace
of L1(G, ω) is an ideal in L1(G, ω) if and only if I is two-sided translation
invariant.

Exercise 1.6.39. Let H be a Hilbert space and K(H) the algebra of compact
operators on H . Let P be a projection of finite rank in H . Show that K(H)P
is a closed modular left ideal of K(H).

Exercise 1.6.40. Let H be a Hilbert space. Determine the minimal closed
proper left ideals of K(H) and the maximal modular left ideals of K(H).

Exercise 1.6.41. Let X be a compact Hausdorff space, Y a closed subspace
of X and I the ideal {f ∈ C(X) : f |Y = 0}. Show that C(X)/I is isometrically
isomorphic to C(Y ).

Exercise 1.6.42. Let A be the space of all sequences f : N → C such that
kf(k) → 0 as k → ∞. With pointwise multiplication and the norm

‖f‖ = sup{k|f(k)| : k ∈ N},

A is a Banach algebra. Show that the multiplier algebra of A is isometrically
isomorphic to l∞(N), where g ∈ l∞(N) acts on A by pointwise multiplication.

Exercise 1.6.43. For 1 ≤ p < ∞, let lp = lp(N) be as in Exercise 1.6.9. Show
that the multiplier algebra of lp is isometrically isomorphic to l∞.
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Exercise 1.6.44. Let G be a compact Abelian group and let T be an injective
multiplier on L1(G). Use the two facts that M(L1(G)) = M(G) and that
̂G ⊆ L1(G) to show that T has dense range.

Exercise 1.6.45. Let A be a faithful Banach algebra. Let T ∈ M(A) and
suppose that T is bijective. Show that T−1 ∈ M(A).

Exercise 1.6.46. Let A be a faithful Banach algebra. Show that the multi-
plier algebra M(A) is complete in the strong operator topology on B(A) in
which a net (Tα)α converges to T if and only if ‖Tαx−Tx‖ → 0 for all x ∈ A.

Exercise 1.6.47. Let X and Y be locally compact Hausdorff spaces. For
f ∈ C0(X, C0(Y )), define φ(f) on X × Y by φ(f)(x, y) = f(x)(y). Show that
the mapping φ : f → φ(f) is an isometric isomorphism from C0(X, C0(Y ))
onto C0(X × Y ).

Exercise 1.6.48. Let X and Y be nonempty sets and endow l1(X) and
l1(Y ) with the pointwise product. Show that the projective tensor product
l1(X) ̂⊗πl1(Y ) is isometrically isomorphic to l1(X × Y ).

Exercise 1.6.49. Let A be a Banach algebra and πA : A ̂⊗πA → A the
continuous homomorphism satisfying πA(a⊗ b) = ab for all a, b ∈ A. Suppose
that A has an identity e. Show that kerπA equals the closed linear span of all
elements of the form a ⊗ b − e ⊗ ab.

Exercise 1.6.50. Let A be a Banach algebra and X a locally compact Haus-
dorff space. It follows from Proposition 1.5.6 that the injective tensor norm on
A ⊗ C0(X) is an algebra norm. Prove this without appealing to Proposition
1.5.6.

1.7 Notes and references

Most of the material collected in this chapter can be found in several books
on Banach algebras. Therefore we confine ourselves to only a few references
and historical remarks.

Theorem 1.2.8, which is one of the most striking results in Banach algebra
theory, is in full generality the work of Gelfand [38]. His proof is based on
complex analysis. The more elementary proof, which we have also included
and which avoids the use of function theory, is due to Rickart and presented in
his monograph [108]. The Gelfand–Mazur theorem was announced in [86] and
proven in [38]. The permanence properties of spectra such as Theorem 1.2.12,
which are essential for this treatise, appear to be due to Shilov. Concerning
approximate identities, we refer to [2], [27], [104], and [138].

Weighted convolution algebras on the real line were introduced by Beurling
[12]. They were subsequently defined on arbitrary locally compact groups,
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termed Beurling algebras, and investigated by many authors. The literature
on them is enormous (compare [25]). That weight functions are bounded away
from both zero and infinity on compact sets, was observed in [29].

The basic results on ideals in Banach algebras, given in Section 1.4, are all
standard, including the description of the closed ideals of C0(X). A very good
reference to the theory of multipliers is [74]. The fact that the multiplier alge-
bra of L1(G) is isomorphic to the measure algebra M(G), is Wendel’s theorem
[135]. It is worth mentioning that Wendel’s theorem admits a generalisation
to Beurling algebras.



2

Gelfand Theory

Our main objective in this chapter is to develop Gelfand’s theory for commuta-
tive Banach algebras. Associated with any such algebra A is a locally compact
Hausdorff space Δ(A), the structure space of A, and a norm-decreasing homo-
morphism ΓA from A into C0(Δ(A)) (Section 2.2). If A has an identity, Δ(A)
is compact. The converse is true whenever ΓA is injective (A is semisimple),
a fact that can be shown only later (Chapter 3). This representation of A as
an algebra of functions on a locally compact Hausdorff space is fundamental
to any thorough study of commutative Banach algebras. Thus basic questions
are when ΓA is injective or surjective. It turns out that ΓA is an isometric
isomorphism onto C0(Δ(A)) precisely when A is a C∗-algebra (Section 2.4).

If A is unital and (topologically) finitely generated by n elements, say,
then Δ(A) can be canonically identified with a compact subset of C

n (Section
2.3). There is a complete characterisation of subsets of Cn arising in this way
as structure spaces of finitely generated commutative Banach algebras. This
leads to the study of uniform algebras, closed unital subalgebras of C(X),
for a compact subset X of Cn, which separate the points of X . In Section
2.5 we investigate the algebras P (X) and R(X) of polynomial and rational
functions on X , respectively. Comparison of such algebras is interesting from
the approximation theory point of view. Considerably more complicated is
the algebra A(X) of continuous functions on X which are holomorphic on the
interior of X (Section 2.6).

Following our intention to emphasize the connections with commutative
harmonic analysis, we extensively study the convolution algebra L1(G) of
integrable functions on a locally compact Abelian group G. The structure
space Δ(L1(G)) turns out to be homeomorphic with the dual group ̂G of G,
and the Gelfand homomorphism is injective, but surjective only when G is
finite (Section 2.7). Much more subtle are weighted group algebras L1(G, ω).
We confine ourselves to showing that L1(G, ω) is always semisimple and to
determining Δ(L1(G, ω)) in some special cases (Section 2.8).

E. Kaniuth, A Course in Commutative Banach Algebras, Graduate Texts in Mathematics,
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Proceeding further with algebras of functions associated with locally com-
pact groups, in Section 2.9 we elaborate the Gelfand representation of the
Fourier algebra A(G) for an arbitrary locally compact group G. Next, ap-
plying the Gelfand theory to the C∗-algebra of almost periodic functions,
we establish the existence of the Bohr compactification of a locally compact
Abelian group (Section 2.10).

Finally, we investigate tensor products of two commutative Banach al-
gebras A and B, especially the projective tensor product A ̂⊗πB. Although
Δ(A ̂⊗πB) is in the obvious manner homeomorphic to Δ(A)×Δ(B), semisim-
plicity of A ̂⊗πB is a very delicate question (Section 2.11). In fact, by us-
ing failure of the approximation property for Banach spaces one can con-
struct semisimple commutative Banach algebras A and B such A ̂⊗πB is not
semisimple.

2.1 Multiplicative linear functionals

A linear functional ϕ on an algebra A is called multiplicative if ϕ(xy) =
ϕ(x)ϕ(y) for all x, y ∈ A. We start with identifying the multiplicative ones
among all linear functionals on A in terms of spectra (Theorem 2.1.2). We do
not assume here that A is commutative.

Lemma 2.1.1. Let A be a real or complex algebra with identity e, and let ϕ
be a linear functional on A satisfying

ϕ(e) = 1 and ϕ(x2) = ϕ(x)2

for all x ∈ A. Then ϕ is multiplicative.

Proof. By assumption we have

ϕ(x2) + ϕ(xy + yx) + ϕ(y2) = ϕ(x2 + xy + yx + y2)
= ϕ((x + y)2) = (ϕ(x) + ϕ(y))2

= ϕ(x2) + 2ϕ(x)ϕ(y) + ϕ(y2),

and therefore
ϕ(xy + yx) = 2ϕ(x)ϕ(y)

for all x, y ∈ A. Thus it remains to verify that ϕ(yx) = ϕ(xy). Now, for
a, b ∈ A, the identity

(ab − ba)2 + (ab + ba)2 = 2[a(bab) + (bab)a]

implies

ϕ(ab − ab)2 + 4ϕ(a)2ϕ(b)2 = ϕ((ab − ba)2) + ϕ(ab + ba)2

= ϕ((ab − ba)2 + (ab + ba)2)
= 2ϕ(a(bab) + (bab)a)
= 4ϕ(a)ϕ(bab).
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Taking a = x − ϕ(x)e, so that ϕ(a) = 0, and b = y we obtain ϕ(ay) = ϕ(ya)
and hence ϕ(xy) = ϕ(yx). �	

The following theorem is often called the Gleason–Kahane–Zelazko theo-
rem.

Theorem 2.1.2. Let A be a unital Banach algebra. For a linear functional ϕ
on A the following conditions are equivalent.

(i) ϕ is nonzero and multiplicative.
(ii) ϕ(e) = 1 and ϕ(x) �= 0 for every invertible element x of A.
(iii) ϕ(x) ∈ σA(x) for every x ∈ A.

Proof. If ϕ is nonzero and multiplicative, then ϕ(e) = 1 and 1 = ϕ(x)ϕ(x−1)
whenever x is invertible. Thus (i) ⇒ (ii). Also, (ii) ⇒ (iii) is obvious since if
λ ∈ ρA(x), then 0 �= ϕ(x − λe) = ϕ(x) − λ.

Now assume (iii) and note first that ϕ(e) = 1. We are going to show
that ϕ(x2) = ϕ(x)2 for all x ∈ A. To that end, let n ≥ 2 and consider the
polynomial

p(λ) = ϕ((λe − x)n)

of degree n. Denoting its roots by λ1, . . . , λn, we have for each i,

0 = p(λi) = ϕ((λie − x)n) ∈ σA((λie − x)n).

This implies that λi ∈ σA(x) and hence |λi| ≤ rA(x). Now

n
∏

i=1

(λ− λi) = p(λ) = λn − nϕ(x)λn−1 +
(

n
2

)

ϕ(x2)λn−2 + . . . + (−1)nϕ(xn).

Comparing coefficients we see that

n
∑

i=1

λi = nϕ(x) and
∑

1≤i<j≤n

λiλj =
(

n
2

)

ϕ(x2).

On the other hand, by the second equation,
( n
∑

i=1

λi

)2

=
n
∑

i=1

λ2
i + 2

∑

1≤i<j≤n

λiλj =
n
∑

i=1

λ2
i + n(n − 1)ϕ(x2).

Combining these formulae yields

n2|ϕ(x)2 − ϕ(x2)| =

∣

∣

∣

∣

∣

−nϕ(x2) +
n
∑

i=1

λ2
i

∣

∣

∣

∣

∣

≤ n|ϕ(x2)| + nrA(x)2.

This being true for all n, we conclude that ϕ(x2) = ϕ(x)2 for all x ∈ A. It
follows now from Lemma 2.1.1 that ϕ is multiplicative. �	
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Throughout the book, for any Banach algebra A, Δ(A) denotes the set
of all nonzero multiplicative linear functionals on A. It is very important to
know how Δ(A) and Δ(Ae) are related.

Remark 2.1.3. Because ψ(e) = 1 for every ψ ∈ Δ(Ae), each ϕ ∈ Δ(A) has
a unique extension ϕ̃ ∈ Δ(Ae) given by

ϕ̃(x + λe) = ϕ(x) + λ, x ∈ A, λ ∈ C.

Let ˜Δ(A) = {ϕ̃ : ϕ ∈ Δ(A)}. Moreover, let ϕ∞ denote the homomorphism
from Ae to C with kernel A, that is, ϕ∞(x + λe) = λ. Then

Δ(Ae) = ˜Δ(A) ∪ {ϕ∞}.

In fact, if ψ ∈ Δ(Ae) and ψ �= ϕ∞, then ψ|A ∈ Δ(A) and hence ψ = ˜ψ|A.
Identifying Δ(A) with ˜Δ(A) ⊆ Δ(Ae) we always regard Δ(A) as a subset of
Δ(Ae). In this sense, Δ(Ae) = Δ(A) ∪ {ϕ∞}.

Remark 2.1.4. A simple unitisation argument shows that for a linear func-
tional ϕ on a Banach algebra A, condition (iii) in Theorem 2.1.2 is equivalent
to multiplicativity of ϕ without assuming that A has an identity.

Lemma 2.1.5. Let A be a Banach algebra. Every ϕ ∈ Δ(A) is a bounded
linear functional on A and |ϕ(x)| ≤ rA(x) holds for all x ∈ A. In particular,
‖ϕ‖ ≤ 1 and ‖ϕ‖ = 1 if A is unital.

Proof. We can assume that A has an identity e. If x ∈ A and λ ∈ C are such
that |λ| > rA(x), then rA((1/λ)x) < 1 and hence λe − x = λ (e − (1/λ)x)
is invertible in A by Lemma 1.2.6. This implies ϕ(x) �= λ for all such λ, so
that |ϕ(x)| ≤ rA(x). This implies that ‖ϕ‖ ≤ 1 and actually ‖ϕ‖ = 1 since
ϕ(e) = 1. �	

The obvious problem which we have to encounter is the existence of non-
zero multiplicative linear functionals on commutative Banach algebras A. To
start with let A be a complex Banach space and define a product on A by
setting xy = 0 for all x, y ∈ A. If ϕ is a multiplicative linear functional on A,
then

ϕ(x)2 = ϕ(xx) = ϕ(0) = 0.

Less trivial examples showing that nonzero multiplicative linear functionals
need not exist are the following two. Note that, for any commutative Banach
algebra A, Δ(A) = ∅ whenever rA(x) = 0 for every x ∈ A.

Example 2.1.6. Let A = P (D) as a Banach space. For f, g ∈ A define a
function f ◦ g on D by

f ◦ g(z) = z

∫ 1

0

f(z − tz)g(tz)dt,
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z ∈ D. We claim that f ◦ g ∈ A. For that notice first that if polynomials

p(z) =
n
∑

j=0

ajz
j and q(z) =

m
∑

k=0

bkzk,

aj , bk ∈ C, are given then, for any z ∈ D,

(p|D ◦ q|D)(z) =
n
∑

j=0

m
∑

k=0

ajbkzj+k+1

∫ 1

0

tk(1 − t)jdt,

so that p|D ◦ q|D equals the restriction to D of a polynomial. Now, given
arbitrary f and g in A and ε > 0, let p and q be polynomials such that
‖f − p|D‖∞ ≤ ε and ‖g − q|D‖∞ ≤ ε. Then, for any z ∈ D,

|f ◦ g(z) − p|D ◦ q|D(z)| ≤
∫ 1

0

|f(z − tz)g(tz) − p(z − tz)q(tz)|dt

≤
∫ 1

0

|g(tz)| · |f(z − tz) − p(z − tz)|dt

+
∫ 1

0

|p(z − tz)| · |g(tz) − q(tz)|dt

≤ ‖g‖∞‖f − p|D‖∞ + ‖p|D‖∞‖g − q|D‖∞
≤ ε(‖f‖∞ + ‖g‖∞ + ε).

Hence f◦g is the uniform limit of polynomial functions on D, whence f◦g ∈ A.
Clearly, ‖f ◦ g‖∞ ≤ ‖f‖∞‖g‖∞. Moreover, the multiplication (f, g) → f ◦ g
is commutative, associative, and distributive. In fact, this is straightforward
from the definition of f ◦ g. Thus A with product ◦ is a commutative Banach
algebra.

We proceed to show by induction that

|fn(z)| ≤ 1
(n − 1)!

‖f‖n
∞|z|n−1

for every f ∈ A and all z ∈ D and n ∈ N. The case n = 1 being obvious, assume
the estimate to hold for n. Let z ∈ D and write z = reiϕ, 0 ≤ r ≤ 1, ϕ ∈ R.

Then

fn+1(z) = reiϕ

∫ 1

0

f(z − treiϕ)fn(treiϕ)dt

= eiϕ

∫ r

0

f(z − seiϕ)fn(seiϕ)ds,

and hence by the inductive hypothesis,
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|fn+1(z)| ≤ ‖f‖∞
∫ r

0

|fn(seiϕ)|ds

≤ 1
(n − 1)!

‖f‖n+1
∞

∫ r

0

sn−1ds

=
1
n!
‖f‖n+1

∞ rn

=
1
n!
‖f‖n+1

∞ |z|n,

as required. Thus, for every f ∈ A and n ∈ N,

‖fn‖∞ ≤ ‖f‖n
∞

(n − 1)!

and hence, by the spectral radius formula,

rA(f) = lim
n→∞

‖fn‖1/n
∞ ≤ ‖f‖∞ lim

n→∞

( 1
(n − 1)!

)1/n

= 0.

This shows that σA(f) = {0} for all f ∈ A, and therefore Δ(A) = ∅.

Example 2.1.7. Define a bounded linear operator T on C[0, 1] by

Tf(t) =

t
∫

0

f(s)ds, f ∈ C[0, 1], t ∈ [0, 1].

Let A be the norm closure in B(C[0, 1]) of the set of all polynomials in T of
the form

n
∑

i=1

aiT
i, a1, . . . , an ∈ C, n ∈ N.

A is a commutative Banach algebra which does not have an identity. A
straightforward induction argument shows

|T nf(t)| ≤ ‖f‖∞
tn

n!

for all t ∈ [0, 1] and n ∈ N. Hence

‖T nf‖∞ ≤ 1
n!
‖f‖∞,

and this inequality gives

‖T n‖1/n ≤
(

1
n!

)1/n

for all n ∈ N. Since (n!)1/n → ∞ as n → ∞, we get rA(T ) = 0. The spectral
radius rA is subadditive and submultiplicative (Lemma 1.2.13) and continu-
ous. Therefore it follows that rA(S) = 0 for all S ∈ A.
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Of course, the algebra A is reminiscent of the Volterra algebra which was
introduced in Exercise 1.6.12. In fact, restricting the convolution of Example
1.6.12 to C[0, 1] and denoting by u the constant one function on [0, 1], we have

Tf(t) =
∫ t

0

u(t − s)f(s)ds = u ∗ f(t)

for all f ∈ C[0, 1] and t ∈ R. It is now easily verified that un, the n-fold
convolution product of u, is given by un(t) = tn−1/(n − 1)!, n ∈ N. Since the
polynomials are uniformly dense in C[0, 1], it follows that A equals the closure
of in B(C[0, 1]) of the algebra of all convolution operators

Tg : C[0, 1] → C[0, 1], f → g ∗ f,

g ∈ C[0, 1]. Because of this similarity, A is also sometimes termed Volterra
algebra.

If A is a unital commutative Banach algebra, the anomaly just discussed
cannot occur. This is an immediate consequence of the next theorem which
forms the basic link between Δ(A) and ideals in A.

Theorem 2.1.8. For a commutative Banach algebra A, the mapping

ϕ → ker ϕ = {x ∈ A : ϕ(x) = 0}

is a bijection between Δ(A) and Max(A), the set of all maximal modular ideals
in A.

Proof. For ϕ ∈ Δ(A), ker ϕ is an ideal and a closed linear subspace of codi-
mension one in A. To verify that ker ϕ is modular simply choose u ∈ A such
that ϕ(u) = 1. Then, for any x ∈ A,

ϕ(ux − x) = ϕ(u)ϕ(x) − ϕ(x) = 0,

whence ux− x ∈ ker ϕ. Thus u is an identity modulo ker ϕ, and hence ker ϕ
is a maximal modular ideal.

Let now that ϕ1, ϕ2 ∈ Δ(A) be such that ker ϕ1 = ker ϕ2 and denote this
ideal by I. Let u be an identity modulo I. Then, since the codimension of I
is one, each x ∈ A can be uniquely expressed as

x = λu + y, y ∈ I, λ ∈ C.

As ϕ(u) = 1 for every homomorphism ϕ with ker ϕ = I, we get

ϕ1(x) = λϕ1(u) + ϕ1(y) = λ = λϕ2(u) + ϕ2(y) = ϕ2(x).

Finally, let M ∈ Max(A) and let u be an identity modulo M . We already
know that M is closed in A, so A/M is a Banach algebra. Suppose there exists
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x ∈ A \ M such that x + M is not invertible in A/M . Then A/M(x + M) is
a proper nonzero ideal in A/M since

x + M = (u + M)(x + M) ∈ A/M(x + M)

is nonzero. This contradicts the maximality of M . Thus A/M is a Banach
division algebra and hence, by the Gelfand–Mazur theorem (Theorem 1.2.9),
isomorphic to the field of complex numbers. Clearly, this isomorphism defines
a homomorphism ϕ : A → C with ker ϕ = M. �	

Definition 2.1.9. Let A be a commutative Banach algebra. The radical of
A, rad(A), is defined by

rad(A) =
⋂

{M : M ∈ Max(A)} =
⋂

{kerϕ : ϕ ∈ Δ(A)},

where rad(A) is understood to be A if Δ(A) = ∅. Clearly, rad(A) is a closed
ideal of A. The algebra A is called semisimple if rad(A) = {0} and radical if
rad(A) = A.

In Examples 2.1.6 and 2.1.7 we have already seen examples of radical
Banach algebras with nontrivial multiplication. On the other hand, it will
follow from Theorem 2.2.5 in the next section that A is semisimple if and
only if for every x ∈ A, rA(x) = 0 implies that x = 0. Because the spectral
radius is subadditive and submultiplicative, this means that A is semisimple
if and only if rA is an algebra norm on A. Thus Δ(A) �= ∅.

Returning to the existence of nonzero multiplicative linear functionals,
assume that A is a commutative Banach algebra with identity. Then the
proper ideal {0} is contained in some maximal ideal which, by Theorem 2.1.8,
is the kernel of a homomorphism from A onto C.

We continue with a number of interesting applications of Lemma 2.1.5.

Corollary 2.1.10. Let φ be a homomorphism from a commutative Banach
algebra A into a semisimple commutative Banach algebra B. Then φ is con-
tinuous.

Proof. By the closed graph theorem it suffices to show that if xn ∈ A, n ∈ N,
are such that xn → 0 and φ(xn) → b for some b ∈ B, then b = 0. Let
ϕ ∈ Δ(B). Then ϕ ◦ φ ∈ Δ(A) ∪ {0} and hence both, ϕ and ϕ ◦ φ, are
continuous by Lemma 2.1.5. It follows that

ϕ(b) = lim
n→∞

ϕ(φ(xn)) = lim
n→∞

(ϕ ◦ φ)(xn) = 0.

Since this holds for all ϕ ∈ Δ(B) and B is semisimple we get b = 0. �	

Corollary 2.1.11. On a semisimple commutative Banach algebra all Banach
algebra norms are equivalent.
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Proof. Suppose A is a semisimple commutative Banach algebra, and let ‖ · ‖1

and ‖ · ‖2 be two Banach algebra norms on A. The statement follows by
applying Corollary 2.1.10 with φ the identity mappings (A, ‖ ·‖1) → (A, ‖ ·‖2)
and (A, ‖ · ‖2) → (A, ‖ · ‖1). �	

Corollary 2.1.12. Every involution on a semisimple commutative Banach
algebra A is continuous.

Proof. Let ‖ · ‖ be the given norm an A. We define a new norm | · | on A
by |x| = ‖x∗‖. It is clear that | · | is submultiplicative. If xn ∈ A, n ∈ N,
form a Cauchy sequence for | · |, then (x∗

n)n is a Cauchy sequence for ‖ · ‖.
Consequently, ‖x∗

n − x‖ → 0 for some x ∈ A, and hence |xn − x∗| → 0. This
shows that (A, | · |) is complete. By Corollary 2.1.11 there exists c > 0 such
that

‖x∗‖ = |x| ≤ c‖x‖
for all x ∈ A, as was to be shown. �	

Let C∞[0, 1] denote the algebra of all infinitely many times differentiable
functions on [0, 1].

Corollary 2.1.13. The algebra C∞[0, 1] admits no Banach algebra norm.

Proof. Suppose there is a Banach algebra norm ‖ · ‖ on C∞[0, 1]. Applying
Corollary 2.1.10 to the identity mapping from C∞[0, 1] into C[0, 1] we see that
there exists c > 0 such that

‖f‖∞ ≤ c‖f‖

for all f ∈ C∞[0, 1]. Using this inequality, we prove that the differentiation
mapping D : f → f ′ from C∞[0, 1] into itself is continuous. Thus, let fn ∈
C∞[0, 1], n ∈ N, be such that

lim
n→∞

‖fn‖ = 0 and lim
n→∞

‖f ′
n − g‖ = 0

for some g ∈ C∞[0, 1]. Then

lim
n→∞

‖fn‖∞ = 0 and lim
n→∞

‖f ′
n − g‖∞ = 0.

Since for each x, y ∈ [0, 1],
∣

∣

∣

∣

∣

∣

y
∫

x

g(t)dt

∣

∣

∣

∣

∣

∣

≤ |fn(y) − fn(x)| +

∣

∣

∣

∣

∣

∣

y
∫

x

(f ′
n(t) − g(t))dt

∣

∣

∣

∣

∣

∣

≤ 2 ‖fn‖∞ + |y − x| · ‖f ′
n − g‖∞,

it follows that
∫ y

x
g(t)dt = 0. Hence g = 0 because x and y are arbitrary. By

the closed graph theorem, D is continuous. Thus there exists d > 0 such that
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‖f ′‖ ≤ d‖f‖

for all f ∈ C∞[0, 1]. Now, let f(t) = e2dt, t ∈ [0, 1]. Then

2d‖f‖ = ‖f ′‖ ≤ d‖f‖.

This contradiction shows that there cannot exist a Banach algebra norm on
C∞[0, 1]. �	

2.2 The Gelfand representation

In this section we develop the basic elements of Gelfand’s theory which repre-
sents a (semisimple) commutative Banach algebra as an algebra of continuous
functions on a locally compact Hausdorff space.

Definition 2.2.1. Let A be a commutative Banach algebra and, as before,
Δ(A) the set of all nonzero (hence surjective) algebra homomorphisms from
A to C. We endow Δ(A) with the weakest topology with respect to which all
the functions

Δ(A) → C, ϕ → ϕ(x), x ∈ A,

are continuous. A neighbourhood basis at ϕ0 ∈ Δ(A) is then given by the
collection of sets

U(ϕ0, x1, . . . , xn, ε) = {ϕ ∈ Δ(A) : |ϕ(xi) − ϕ0(xi)| < ε, 1 ≤ i ≤ n},

where ε > 0, n ∈ N, and x1, . . . , xn are arbitrary elements of A. This topology
on Δ(A) is called the Gelfand topology. There are several names in use for
the space Δ(A), equipped with the Gelfand topology: The structure space,
the spectrum or Gelfand space of A, and the maximal ideal space, the latter
notion being justified through the bijective correspondence between Δ(A) and
Max(A) (Theorem 2.1.8).

Remark 2.2.2. We have seen in Lemma 2.1.5 that Δ(A) is contained in the
unit ball of A∗. The Gelfand topology obviously coincides with the relative
w∗-topology of A∗ on Δ(A). When adjoining an identity e to A, Δ(Ae) =
Δ(A) ∪ {ϕ∞} (Remark 2.1.3) and according to the following theorem the
topology on Δ(A) is the one induced from Δ(Ae).

Theorem 2.2.3. Let A be a commutative Banach algebra. Then

(i) Δ(A) is a locally compact Hausdorff space.
(ii) Δ(Ae) = Δ(A) ∪ {ϕ∞} is the one-point compactification of Δ(A).
(iii) Δ(A) is compact if A has an identity.
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Proof. It is easy to see that Δ(A) is a Hausdorff space. Indeed, if ϕ1 and ϕ2

are distinct elements of Δ(A), then for some x ∈ A, δ = 1
2 |ϕ1(x)− ϕ2(x)| > 0

and hence
U(ϕ1, x, δ) ∩ U(ϕ2, x, δ) = ∅.

To prove that Δ(A) is compact if A has an identity e, let

C =
∏

x∈A

{z ∈ C : |z| ≤ ‖x‖}.

Equipped with the product topology, C is a compact space by Tychonoff’s
theorem. Since |ϕ(x)| ≤ ‖x‖ for all ϕ ∈ Δ(A) and x ∈ A, we can define a
mapping φ from Δ(A) into C by

φ(ϕ) = (ϕ(x))x∈A.

Then φ is injective and, by definition of the Gelfand topology, a homeomor-
phism from Δ(A) onto φ(Δ(A)). Thus, in order to establish that Δ(A) is
compact it remains to show that φ(Δ(A)) is closed in C. To this end, let
λ = (λx)x∈A ∈ C lie in the closure of φ(Δ(A)) and let x, y ∈ A, α, β ∈ C

and ε > 0 be given. If ϕ ∈ Δ(A) is such that |ϕ(a) − λa| ≤ ε for
a ∈ {x, y, xy, αx + βy}, then

|αλx + βλy − λαx+βy| ≤ |α| |λx − ϕ(x)| + |β| |λy − ϕ(y)|
+ |ϕ(αx + βy) − λαx+βy |

≤ ε(|α| + |β| + 1)

and

|λxy − λxλy| ≤ |λxy − ϕ(xy)| + |ϕ(y)| |ϕ(x) − λx|
+ |λx| |ϕ(y) − λy|

≤ ε(1 + ‖y‖ + ‖x‖).

Since ε > 0 was arbitrary, it follows that ψ : x → λx, A → C is a homomor-
phism. Moreover, ψ ∈ Δ(A) because ψ(e) = λe = 1. This completes the proof
of statement (iii).

Now we drop the hypothesis that A be unital and consider Δ(Ae) and
Δ(A) ⊆ Δ(Ae). We denote the basic neighbourhoods in Δ(A) and Δ(Ae) by
U and Ue, respectively. Then, for ϕ ∈ Δ(A), ε > 0 and a finite subset F of A,

Ue(ϕ, F, ε) =
{

U(ϕ, F, ε) ∪ {ϕ∞} if |ϕ(x)| < ε for all x ∈ F,
U(ϕ, F, ε) otherwise.

It follows that the Gelfand topology on Δ(A) coincides with the relative
Gelfand topology of Δ(Ae). However, the singleton {ϕ∞} is closed in Δ(Ae),
so that Δ(A) is open in Δ(Ae) and hence is locally compact. This proves (i).

Finally, for x ∈ A and ε > 0,



54 2 Gelfand Theory

Uε(ϕ∞, x, ε) = {ϕ∞} ∪ {ϕ ∈ Δ(A) : |ϕ(x)| < ε}
= Δ(Ae) \ {ψ ∈ Δ(Ae) : |ψ(x)| ≥ ε}.

Now, the sets {ψ ∈ Δ(Ae), |ψ(x)| ≥ ε}, x ∈ A, are closed in Δ(Ae) and
hence compact. The complement of a basic neighbourhood of ϕ∞ is a finite
union of such compact sets. Therefore it follows that Δ(Ae) is the one-point
compactification of Δ(A). �	

A natural question arising in view of the preceding theorem is whether
a semisimple commutative Banach algebra A has to possess an identity if
Δ(A) is compact. Actually, this is true. This turns out to be a consequence of
Shilov’s idempotent theorem, the proof of which utilises the several-variable
functional calculus. A considerably simpler proof is available when A is regular
(Corollary 4.2.11).

Definition 2.2.4. For x ∈ A, we define x̂ : Δ(A) → C by x̂(ϕ) = ϕ(x). Then
x̂ is a continuous function, which is called the Gelfand transform of x. It is
easily checked that the mapping

ΓA : A → C(Δ(A)), x → x̂

is a homomorphism, the Gelfand homomorphism or Gelfand representation of
A. We quite often denote ΓA(A) by ̂A.

Fundamental properties of the Gelfand transform and the Gelfand repre-
sentation are given in the next theorems.

Theorem 2.2.5. Let A be a commutative Banach algebra. For each x ∈ A,

σA(x) \ {0} ⊆ x̂(Δ(A)) = {ϕ(x) : ϕ ∈ Δ(A)} ⊆ σA(x).

If A is unital, then x̂(Δ(A)) = σA(x).

Proof. Suppose first that A has an identity e. Then ϕ(x) ∈ σA(x) for every
ϕ ∈ Δ(A) (see Theorem 2.1.2). Conversely, if λ ∈ σA(x), then

I = (λe − x)A

is a proper ideal in A and hence contained in ker ϕ for some ϕ ∈ Δ(A) (Lemma
1.3.2 and Theorem 2.1.8). It follows that ϕ(λe−x) = 0, so that λ ∈ x̂(Δ(A)).

If A fails to be unital, then by the preceding paragraph and the definition
of the spectrum,

σA(x) \ {0} = σAe(x) \ {0} = x̂(Δ(Ae)) \ {0}
⊆ x̂(Δ(A)) = x̂(Δ(Ae)) = σAe(x)
= σA(x),

as was to be shown. �	
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The following corollary is an immediate consequence of Theorem 2.2.5 and
the spectral radius formula.

Corollary 2.2.6. For x ∈ A, x̂ = 0 if and only if

rA(x) = lim
n→∞

‖xn‖1/n = 0.

Theorem 2.2.7. Let A be a commutative Banach algebra and Γ the Gelfand
representation of A.

(i) Γ maps A into C0(Δ(A)) and is norm decreasing.
(ii) Γ (A) strongly separates the points of Δ(A).
(iii) Γ is isometric if and only if ‖x‖2 = ‖x2‖ for all x ∈ A.

Proof. (i) Since, by Theorem 2.2.3, Δ(Ae) is the one-point compactification
of Δ(A) and x̂(ϕ∞) = 0 for x ∈ A, we have x̂ ∈ C0(Δ(A)). Moreover, by
Theorem 2.2.5,

‖x̂‖∞ = rA(x) ≤ ‖x‖.

(ii) It is clear that Γ (A) strongly separates the points of Δ(A), that is,
Γ (A)(ϕ) �= {0} for each ϕ ∈ Δ(A), and if ϕ1 �= ϕ2, then x̂(ϕ1) �= x̂(ϕ1) for
some x ∈ A.

(iii) If ‖y‖2 = ‖y2‖ for all y ∈ A, then ‖x2n‖ = ‖x‖2n

for every x ∈ A and
n ∈ N. Hence

‖x̂‖∞ = rA(x) = lim
n→∞

‖x2n‖1/2n

= ‖x‖.

Conversely, ‖x2‖ = ‖x̂2‖∞ = ‖x̂‖2
∞ = ‖x‖2 when Γ is an isometry. �	

We now present three simple examples. More difficult and challenging ones
are discussed in subsequent sections.

Example 2.2.8. Let X be a locally compact Hausdorff space. The closed
ideals in C0(X) have been completely determined in Theorem 1.3.6. In par-
ticular,

x → Mx = {f ∈ C0(X) : f(x) = 0}

sets up a one-to-one correspondence between the points of X and the maximal
modular ideals of C0(X). On the other hand, by Theorem 2.1.8, we have a
bijection

Δ(C0(X)) → Max(C0(X)), ϕ → kerϕ.

This yields a bijection X → Δ(C0(X)), x → ϕx where ϕx(f) = f(x) for
f ∈ C0(X). The map x → ϕx is a homeomorphism. Indeed, given x ∈ X
and an open neighbourhood V of x, by Urysohn’s lemma there exists f ∈
C0(X) such that f(x) �= 0 and f |X\V = 0, and hence V contains the Gelfand
neighbourhood {y : |ϕy(f) − ϕx(f)| < |f(x)|} of x. After identifying X with
Δ(C0(X)), the Gelfand homomorphism of C0(X) is the identity mapping.



56 2 Gelfand Theory

Example 2.2.9. Let A = Cn[a, b], and for each t ∈ [0, 1] define ϕt ∈ Δ(A)
by ϕt(f) = f(t). We claim that

φ : [a, b] → Δ(A), t → ϕt

is a homeomorphism. Obviously, φ is injective and continuous. Let M be any
maximal ideal in A. Then, by the same reasoning as in the proof of Theorem
1.3.6, we find s ∈ [a, b] such that M = {f ∈ A : f(s) = 0}. It follows that
M = ker ϕs. Hence φ is a homeomorphism since [a, b] is compact and Δ(A)
is Hausdorff. As in the previous example, after identifying [a, b] with Δ(A),
the Gelfand homomorphism of A is the identity mapping.

Example 2.2.10. We determine the structure space of l1(Z). For z ∈ T,
define ϕz : l1(Z) → C by

ϕz(f) =
∑

n∈Z

f(n)z−n.

Then, for f, g ∈ l1(Z),

ϕz(f ∗ g) =
∑

n∈Z

(

∑

m∈Z

f(n − m)g(m)

)

z−n

=
∑

n,m∈Z

f(n)g(m)z−(n+m)

= ϕz(f)ϕz(g).

Thus ϕz ∈ Δ(l1(Z)) and the map z → ϕz is clearly injective. Conversely,
every ϕ ∈ Δ(l1(Z)) is of this form. Indeed, let z = ϕ(δ−1). Then

ϕ(δ−n) = ϕ(δ−1 ∗ . . . ∗ δ−1) = ϕ(δ−1)n = zn

and hence also ϕ(δn) = 1/ϕ(δ−n) = z−n for all n ∈ N. Since the finite linear
combinations of Dirac functions δn, n ∈ N, are dense in l1(Z), it follows
that ϕ = ϕz . By routine arguments it is shown that the map z → ϕz is a
homeomorphism.

We have seen earlier (Example 1.1.5) that the commutative Banach algebra
AC(T) is isomorphic to l1(Z), the isomorphism being given by f → (cn(f))n,
where

cn(f) =
1
2π

∫ 2π

0

f(eit)e−intdt

for n ∈ Z. Thus, by the preceding example, Δ(AC(T)) can be identified with
T as follows. For z ∈ T, let

ϕz(f) =
∑

n∈Z

cn(f)zn, f ∈ AC(T).



2.2 The Gelfand representation 57

Then z → ϕz is a homeomorphism between T and Δ(AC(T)). On making
this identification,

̂f(z) =
∑

n∈Z

cn(f)zn = f(z)

for all f ∈ AC(T), so that the Gelfand representation of AC(T) is the identity.
As a simple consequence we obtain the following classical result due to Wiener.

Theorem 2.2.11. If f ∈ AC(T) is such that f(z) �= 0 for all z ∈ T, then
1/f ∈ AC(T); that is, 1/f has an absolutely convergent Fourier series.

Proof. With the previous identification of Δ(AC(T)) with T, the assumption
on f means that f belongs to no maximal ideal of AC(T). Thus f is invertible
in AC(T) and so 1/f ∈ AC(T). �	

Lemma 2.2.12. Let A and B be commutative Banach algebras. If A and B
are algebraically isomorphic, then Δ(A) and Δ(B) are homeomorphic.

Proof. Suppose φ : A → B is an algebra isomorphism. Let φ∗ : Δ(B) → Δ(A)
be the dual mapping; that is,

φ∗(ϕ)(a) = ϕ(φ(a)), a ∈ A, ϕ ∈ Δ(B).

It is easily checked that φ∗ is a bijection. φ∗ is continuous provided that all
functions

Δ(B) → C, ϕ → φ∗(ϕ)(a), a ∈ A,

are continuous. However, that such functions are continuous follows immedi-
ately from the definition of φ∗ and the definition of the topology on Δ(B).
(φ∗)−1 is continuous on the same grounds. �	

Corollary 2.2.13. For locally compact Hausdorff spaces X and Y the follow-
ing conditions are equivalent.

(i) C0(X) and C0(Y ) are isometrically isomorphic.
(ii) C0(X) and C0(Y ) are algebraically isomorphic.
(iii) X and Y are homeomorphic.

Proof. (i) ⇒ (ii) is trivial, and (ii) ⇒ (iii) is a consequence of the preceding
lemma and Example 2.2.8. Finally, if φ : X → Y is a homeomorphism, then
f → f ◦ φ is an isometric algebra isomorphism from C0(Y ) to C0(X). �	

We continue with a proposition which often can efficiently be used to
identify the Gelfand topology.

Proposition 2.2.14. Let X be a locally compact Hausdorff space and let A
be a family of functions in C0(X) which strongly separates the points of X.
Then the topology of X equals the weak topology with respect to the functions
x → f(x), f ∈ A.
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Proof. The given topology on X is stronger than the weak topology. Thus
it suffices to show that given x ∈ X and an open neighbourhood U of x in
X , there exists a set V such that x ∈ V ⊆ U and V is open in the weak
topology. Let ˜X be X if X is compact, and let ˜X = X ∪ {∞} be the one-
point compactification of X if X is noncompact. Every f ∈ C0(X) extends
continuously to ˜X by setting f(∞) = 0. Since A strongly separates the points
of X , for every y ∈ ˜X \ U there exists fy ∈ A such that

εy = |fy(y) − fy(x)| > 0.

Then, for every y ∈ ˜X \ U ,

Vy = {z ∈ ˜X : |fy(z) − fy(y)| < εy/2}

is an open neighbourhood of y in ˜X, and because ˜X \U is compact there are
finitely many y1, . . . , yn ∈ ˜X \ U such that ˜X \ U ⊆

⋃n
j=1 Vyj . Let

V = {z ∈ X : |fyj(z) − fyj (x)| < εyj/2 for all 1 ≤ j ≤ n}.

Then x ∈ V and V is contained in U . Indeed, if z ∈ V and z �∈ U , then z ∈ Vyj

for some j, and hence

|fyj(x) − fyj(yj)| ≤ |fyj (x) − fyj (z)| + |fyj (z) − fyj (yj)| < εyj .

This contradicts the definition of εyj . �	

For a closed ideal I of a commutative Banach algebra A, we now relate
the Gelfand topologies on Δ(I) and on Δ(A/I) to the Gelfand topology on
Δ(A). For a subset M of A, the hull h(M) of M is defined to be

h(M) = {ϕ ∈ Δ(A) : ϕ(M) = {0}}.

Lemma 2.2.15. Let I be a closed ideal of A and q : A → A/I the quotient
homomorphism.

(i) The map ϕ → ϕ ◦ q is a homeomorphism from Δ(A/I) onto h(I).
(ii) The map ϕ → ϕ|I is a homeomorphism from Δ(A) \ h(I) onto Δ(I).

Proof. (i) It is obvious that the map is a bijection. It is a homeomorphism
since

U(ϕ, x + I, ε) ◦ q = {ψ ◦ q : ψ ∈ Δ(A/I), |ψ(x + I) − ϕ(x + I)| < ε}
= {ρ ∈ h(I) : |ρ(x) − ϕ ◦ q(x)| < ε}
= U(ϕ ◦ q, x, ε)

for all ϕ ∈ Δ(A/I), x ∈ A and ε > 0.
(ii) If ϕ1, ϕ2 ∈ Δ(A) \ h(I) are such that ϕ1|I = ϕ2|I , then choosing x ∈ I

such that ϕ1(x) = 1, it follows that
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ϕ1(y) = ϕ1(yx) = ϕ2(yx) = ϕ2(y)

for all y ∈ A. So the map ϕ → ϕ|I is injective, and it is clearly continuous.
Given ψ ∈ Δ(I), again choose x ∈ I with ψ(x) = 1 and define ϕ on A by
ϕ(y) = ψ(yx), y ∈ A. Then ϕ extends ψ, and it is easily verified that ϕ ∈
Δ(A)\h(I). Finally, let ϕ ∈ Δ(A)\h(I), y ∈ A, y �= 0, and ε > 0 be given and
let δ = min{ε/2, ε/2‖y‖}. Then, if ρ ∈ Δ(A) is such that ρ|I ∈ U(ϕ|I , x, yx, δ),
it follows that

|ρ(y) − ϕ(y)| ≤ |ρ(y)| · |ϕ(x) − ρ(x)| + |ρ(yx) − ϕ(yx)|
< δ‖y‖ + δ ≤ ε,

whence ρ ∈ U(ϕ, y, ε). Thus the map ϕ → ϕ|I is also open, hence a homeo-
morphism. �	

By Lemma 2.2.15, for each y ∈ A there is a unique continuous function
fy on Δ(I) such that ŷx(ϕ) = fy(ϕ)x̂(ϕ) for all ϕ ∈ Δ(I) and x ∈ A. This
in particular applies when a commutative Banach algebra A has a bounded
approximate identity and hence can be considered as a closed ideal of its mul-
tiplier algebra M(A) (Theorem 1.4.12). The following proposition, however,
shows that this same conclusion holds if A is merely assumed to be faithful
(see Proposition 1.4.11).

Proposition 2.2.16. Let A be a commutative Banach algebra and let T ∈
M(A). Then there exists a unique continuous function f on Δ(A) such that
̂Tx(ϕ) = f(ϕ)x̂(ϕ) for all ϕ ∈ Δ(A) and x ∈ A. Furthermore, f is bounded
and ‖f‖∞ ≤ ‖T ‖.

Proof. If ϕ ∈ Δ(A) and x, y ∈ A are such that x̂(ϕ) �= 0 and ŷ(ϕ) �= 0, then
it follows from (Tx)y = x(Ty) that

̂Tx(ϕ)
x̂(ϕ)

=
̂Ty(ϕ)
ŷ(ϕ)

.

For each ϕ ∈ Δ(A) choose x ∈ A with x̂(ϕ) �= 0, and define

f(ϕ) =
̂Tx(ϕ)
x̂(ϕ)

.

The above equation shows that this definition is independent of the choice of
x, and hence f is a well-defined continuous function on Δ(A). Moreover, if
x̂(ϕ) = 0 then ̂Tx(ϕ) = 0. Indeed, this follows from

̂Tx(ϕ)ŷ(ϕ) = x̂(ϕ)̂Ty(ϕ)

by choosing y such that ŷ(ϕ) �= 0. Thus the equation ̂Tx(ϕ) = f(ϕ)x̂(ϕ) holds
for all x ∈ A and ϕ ∈ Δ(A).
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If g is a second continuous function on Δ(A) satisfying ̂Tx = g x̂ for all
x ∈ A, then (f(ϕ) − g(ϕ))x̂(ϕ) = 0 for all x ∈ A and ϕ ∈ Δ(A), and this
implies f(ϕ) = g(ϕ). So f is unique.

To show that f is bounded, observe that

|f(ϕ)x̂(ϕ)| = |̂Tx(ϕ)| ≤ ‖ϕ‖ · ‖Tx‖ ≤ ‖ϕ‖ · ‖T ‖ · ‖x‖

for all x ∈ A and ϕ ∈ Δ(A). Taking x ∈ A with ‖x‖ = 1, we obtain

|f(ϕ)| · sup{|x̂(ϕ)| : ‖x‖ = 1} ≤ ‖ϕ‖ · ‖T ‖,

for all ϕ ∈ Δ(A) and hence ‖f‖∞ ≤ ‖T ‖. �	

2.3 Finitely generated commutative Banach algebras

Many naturally occuring Banach algebras are generated (in the sense of the
following definition) by finitely many elements. Such algebras admit a partic-
ularly satisfying description of their structure spaces and this is the theme of
the present section.

Definition 2.3.1. Let A be a commutative Banach algebra with identity e. A
subset E of A is said to generate A if every closed subalgebra of A containing
E and e coincides with A. Equivalently, the set of all finite linear combinations
of elements of the form

xn1
1 xn2

2 · · ·xnr
r , xi ∈ E, ni ∈ N ∪ {0}, r ∈ N,

is dense in A. A is called finitely generated if there exists a finite subset of A
that generates A.

As a very simple example, recall that l1(Z) is generated by the two Dirac
functions δ1 and δ−1.

Definition 2.3.2. Let A be a commutative Banach algebra with identity
and let x1, . . . , xn ∈ A. Then the joint spectrum of x1, . . . , xn is the subset
σA(x1, . . . , xn) of Cn defined by

σA(x1, . . . , xn) = {(ϕ(x1), . . . , ϕ(xn)) : ϕ ∈ Δ(A)}.

Since Δ(A) is compact and the mapping

Δ(A) → C
n, ϕ → (ϕ(x1), . . . , ϕ(xn))

is continuous, σA(x1, . . . , xn) is a compact subset of Cn. It is also evident from
Theorem 2.2.5 that the joint spectrum of a single element x reduces to the
spectrum σA(x) of x.
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Lemma 2.3.3. Let A be a unital commutative Banach algebra, and suppose
that E ⊆ A generates A. Then the mapping

φ : Δ(A) →
∏

x∈E

σA(x), ϕ → (ϕ(x))x∈E

is a homeomorphism between Δ(A) and φ(Δ(A)) ⊆
∏

x∈E σA(x). In particu-
lar, if E is finite, say E = {x1, . . . , xn}, then we have a homeomorphism

Δ(A) → σA(x1, . . . , xn), ϕ → (ϕ(x1), . . . , ϕ(xn)).

Proof. Assume first that ϕ1, ϕ2 ∈ Δ(A) are such that ϕ1(x) = ϕ2(x) for
all x ∈ E. Let B denote the smallest subalgebra of A containing E and the
identity. Then B is dense in A, and ϕ1(y) = ϕ2(y) for all y ∈ B. Since elements
in Δ(A) are continuous it follows that ϕ1 = ϕ2. Hence φ is injective.

Now
∏

x∈E σA(x) carries the weak topology with respect to the projections

py :
∏

x∈E

σA(x) → σA(y), y ∈ E.

Therefore φ is continuous provided that all the functions py ◦ φ, y ∈ E, are
continuous. However, this is clear from py ◦ φ(ϕ) = ϕ(y). Thus

φ : Δ(A) → φ(Δ(A)), ϕ → (ϕ(x))x∈E

is a continuous bijection between a compact space and a Hausdorff space, and
hence is a homeomorphism. �	

We now aim at characterizing those compact subsets of C
n which arise in

this way as structure spaces of commutative Banach algebras generated by n
elements, n ∈ N (Theorem 2.3.6). The relevant geometrical notion is that of
polynomial convexity.

Definition 2.3.4. A compact subset K of Cn, n ∈ N, is said to be polyno-
mially convex if for every z ∈ Cn \ K there exists a polynomial p such that
p(z) = 1 and |p(w)| < 1 for all w ∈ K.

Lemma 2.3.5. Every compact convex subset K of Cn is polynomially convex.

Proof. We view Cn as a 2n-dimensional real vector space. Then, given w ∈
Cn \ K, there exist a real linear functional ψ on Cn = R2n and α ∈ R such
that

ψ(w) > α and ψ(z) < α for all z ∈ K.

Let z = (z1, . . . , zn) ∈ Cn, with zj = xj + iyj, xj , yj ∈ R. Then ψ has the form

ψ(z) =
n
∑

j=1

(ajxj + bjyj),
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where aj , bj ∈ R, 1 ≤ j ≤ n. Let cj = aj − ibj, 1 ≤ j ≤ n, and consider the
function

f(z) = exp

⎛

⎝

n
∑

j=1

cjzj

⎞

⎠

on Cn. Then

|f(z)| = exp

(

Re

⎛

⎝

n
∑

j=1

cjzj

⎞

⎠

)

= exp

(

n
∑

j=1

(ajxj + bjyj)

)

= exp ψ(z)

and hence |f(w)| > eα and |f(z)| < eα for all z ∈ K. It follows that, for a
suitable N ∈ N, the polynomial q defined by

q(z) =
n
∏

j=1

(

N
∑

k=0

1
k!

ck
j zk

j

)

satisfies |q(w)| > eα and |q(z)| < eα for all z ∈ K. Finally, the polynomial
p = |q(w)|−1q has the properties required in Definition 2.3.4. �	

Theorem 2.3.6. For a compact subset K of Cn the following conditions are
equivalent.

(i) There exists a unital commutative Banach algebra A which is generated
by n elements x1, . . . , xn such that K = σA(x1, . . . , xn).

(ii) K is polynomially convex.

Proof. To prove (i) ⇒ (ii), let e denote the identity of A and let

λ = (λ1, . . . , λn) ∈ C
n \ σA(x1, . . . , xn).

Then, given any ϕ ∈ Δ(A), ϕ(xj) �= λj for some 1 ≤ j ≤ n. Equivalently, for
each M ∈ Max(A) there exists j such that xj − λje �∈ M . Consider the ideal

I =
{

n
∑

j=1

(xj − λje)yj : yj ∈ A
}

of A. If I were a proper ideal, then I ⊆ M for some M ∈ Max(A), but
xj −λje ∈ I and xj −λje �∈ M for some j. Thus I = A, and hence there exist
y1, . . . , yn ∈ A such that

n
∑

j=1

(xj − λje)yj = e.

Choose δ > 0 such that δ
∑n

j=1 ‖xj − λje‖ < 1. Since A is generated by
x1, . . . , xn, there exist polynomials p1, . . . , pn in n variables such that
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‖pj(x1, . . . , xn) − yj‖ ≤ δ

for 1 ≤ j ≤ n. It follows that
∥

∥

∥

∥

∥

e−
n
∑

j=1

(xj −λje)pj(x1, . . . , xn)

∥

∥

∥

∥

∥

≤
n
∑

j=1

‖xj −λje‖ ·‖yj −pj(x1, . . . , xn)‖ < 1.

Now, define a polynomial p on Cn by

p(z1, . . . , zn) = 1 −
n
∑

j=1

(zj − λj)pj(z1, . . . , zn).

Then p(λ1, . . . , λn) = 1, and for every ϕ ∈ Δ(A)

|p(ϕ(x1), . . . , ϕ(xn))| =

∣

∣

∣

∣

∣

1 −
n
∑

j=1

(ϕ(xj) − λj)pj(ϕ(x1), . . . , ϕ(xn))

∣

∣

∣

∣

∣

=
∣

∣ϕ(e) −
n
∑

j=1

ϕ(xj − λie)ϕ(pj(x1, . . . , xn))
∣

∣

≤
∥

∥

∥

∥

∥

e −
n
∑

j=1

(xj − λje)pj(x1, . . . , xn)

∥

∥

∥

∥

∥

< 1.

This proves that σA(x1, . . . , xn) is polynomially convex.
Conversely, suppose that K ⊆ Cn is polynomially convex. Let A = P (K),

the algebra of all functions f : K → C that are uniform limits of polynomial
functions on K. Then A is generated by the functions

fj(z) = zj , z = (z1, . . . , zn) ∈ K, 1 ≤ j ≤ n.

We are going to show that K = σA(f1, . . . , fn). For z ∈ K, define ϕz ∈ Δ(A)
by ϕz(f) = f(z). As distinct points can be separated by the functions fj, the
mapping

φ : K → Δ(A), z → ϕz

is injective. φ is also continuous since Δ(A) carries the weak topology with
respect to the functions ϕ → ϕ(f), f ∈ A, and z → ϕz(f) = f(z) is continuous
on K. Thus φ is a homeomorphism from K onto φ(K) ⊆ Δ(A). We claim that
φ(K) = Δ(A). Towards a contradiction, suppose there exists ϕ ∈ Δ(A)\φ(K)
and put

λj = ϕ(fj), 1 ≤ j ≤ n, and λ = (λ1, . . . , λn).

Then λ �∈ K since otherwise ϕλ(fj) = fj(λ) = λj = ϕ(fj), 1 ≤ j ≤ n,
and hence ϕ = ϕλ as A is generated by f1, . . . , fn. Because K is polynomially
convex, we can choose a polynomial p in n variables such that |p(z1, . . . , zn)| <
1 for all z = (z1, . . . , zn) ∈ K and p(λ) = 1. Then, as K is compact,
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‖p|K‖∞ = sup
z∈K

|p(z)| < 1,

and hence |ψ(p|K)| < 1 for all ψ ∈ Δ(A). Now, p|K is a finite linear combina-
tion of functions of the form

z → zm1
1 zm2

2 · . . . · zmn
n = f1(z)m1f2(z)m2 · . . . · fn(z)mn .

As ϕ(fj) = λj , 1 ≤ j ≤ n, we obtain ϕ(p|K) = p(λ) = 1, which is a contradic-
tion. It follows that φ(K) = Δ(A), and hence

σA(f1, . . . , fn) = {(ϕz(f1), . . . , ϕz(fn)) : z ∈ K}
= {(z1, . . . , zn) : z ∈ K} = K.

This shows (ii) ⇒ (i). �	

It is worth emphasising that the proof of (ii) ⇒ (i) in Theorem 2.3.6 shows
that Δ(P (K)) = K when K is polynomially convex.

The following theorem provides a topological description of polynomially
convex subsets of C.

Theorem 2.3.7. A compact subset K of C is polynomially convex if and only
if C \ K connected.

Proof. We first assume that K is polynomially convex and that nevertheless
C \ K is not connected. Then C \ K has a bounded connected component
S �= ∅. Then S is closed in C \ K and also open C \ K, since C \ K is locally
connected. Hence S is also open in C, and therefore its boundary ∂(S) is
contained in K.

By Theorem 2.3.6 there exists a commutative Banach algebra A with
identity that is generated by some element a ∈ A such that K = σA(a).
For every x ∈ A there is a sequence pn, n ∈ N, of polynomials such that
‖pn(a) − x‖ → 0. Because

|pn(ϕ(a)) − ϕ(x)| = |ϕ(pn(a)) − ϕ(x)| ≤ ‖pn(a) − x‖

for all ϕ ∈ Δ(A), (pn)n∈N converges uniformly on K = σA(a) = â(Δ(A))
with limit x̂. Since ∂(S) ⊆ K, (pn)n∈N converges uniformly on all of S by the
maximum modulus principle. We now fix some λ ∈ S. Note that limn→∞ pn(λ)
does not depend on the particular choice of polynomials pn with pn(a) → x.
Indeed, if (qn)n is a second sequence of polynomials such that qn(a) → x,
then for each ϕ ∈ Δ(A)

|pn(ϕ(a)) − qn(ϕ(a))| ≤ |pn(ϕ(a)) − ϕ(x)| + |qn(ϕ(a)) − ϕ(x)| → 0,

so that pn − qn converges uniformly to zero on K, and hence on S. It follows
that

lim
n→∞

pn(λ) = lim
n→∞

qn(λ).
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This allows us to define ψ : A → C by setting

ψ(x) = lim
n→∞

pn(λ),

where (pn)n is any sequence of polynomials with pn(a) → x. It is now easily
verified that ψ is a homomorphism. For example, if pn(a) → x and qn(a) → y,
then (pnqn)(a) → xy and therefore

ψ(xy) = lim
n→∞

(pnqn)(λ) = lim
n→∞

pn(λ) · lim
n→∞

qn(λ) = ψ(x)ψ(y).

With pn ≡ 1, n ∈ N, we get ψ(e) = 1, so that ψ ∈ Δ(A). Finally, choosing
pn(z) = z for all z ∈ C, n ∈ N, we obtain pn(a) = a and hence

ψ(a) = lim
n→∞

pn(λ) = λ.

Thus λ ∈ â(Δ(A)) = K, contradicting the fact that λ ∈ S ⊆ C \ K.
Conversely, suppose that C \ K is connected, and consider A = P (K) as

in the proof of Theorem 2.3.6, (ii) ⇒ (i). Then A is generated by the function
f(z) = z. Moreover, σC(K)(f), the spectrum of f in C(K), equals K since
z → λ−f(z) is invertible in C(K) if and only if λ �∈ K. As C\K is connected,
Theorem 1.2.12 implies K = σA(f), and hence K is polynomially convex by
Theorem 2.3.6, (i) ⇒ (ii). �	
Remark 2.3.8. More generally, it is true for arbitrary n ∈ N, that if K ⊆ C

n

is polynomially convex, then Cn \K is connected. This is proved analogously
by employing the maximum modulus principle for polynomials of several com-
plex variables. However, the following example shows that for n ≥ 2 there ex-
ist compact subsets of Cn which fail to be polynomially convex, even though
Cn \ K is connected.

Example 2.3.9. Let n ≥ 2 and

K = {z = (z1, . . . , zn) ∈ C
n : |zj | = 1, 1 ≤ j ≤ n}.

Assuming that K is polynomially convex we find a polynomial p in n variables
such that |p(z)| < 1 for all z ∈ K and p(0, 1, . . . , 1) = 1. Define a polynomial
q in one variable by

q(w) = p(w, 1, . . . , 1), w ∈ C.

Then |q(w)| < 1 for all w ∈ C with |w| = 1 and q(0) = 1. This contradicts the
maximum modulus principle. Nevertheless, Cn \ K is connected. To see this,
let

Aj = {z = (z1, . . . , zn) ∈ C
n : |zj| > 1}

and
Bj = {z = (z1, . . . , zn) ∈ C

n : |zj| < 1},
1 ≤ j ≤ n, we see that C

n \ K =
⋃n

j=1(Aj ∪ Bj). The sets Aj and Bj are
arcwise connected, Aj ∩Ak �= ∅, Bj ∩Bk �= ∅, and, for j �= k, Aj ∩Bk �= ∅. It
follows that Cn \ K is connected.
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2.4 Commutative C∗-algebras

In this section we investigate the question of when the Gelfand homomor-
phism of a commutative Banach algebra A is an isometric isomorphism onto
C0(Δ(A)). We start with the relevant definition.

Definition 2.4.1. Let A be a Banach algebra with involution x → x∗. Then
A is called a C∗-algebra, if its norm satisfies the equation ‖x∗x‖ = ‖x‖2 for
all x ∈ A. The definition of a C∗-subalgebra is evident.

Note that a C∗-algebra is a Banach ∗-algebra since the equation ‖x‖2 =
‖x∗x‖ implies ‖x‖ ≤ ‖x∗‖ and hence ‖x‖ = ‖x∗‖ for all x ∈ A.

Now let A be a commutative Banach algebra for which the Gelfand ho-
momorphism is an isometric isomorphism onto C0(Δ(A)). Notice first that in
this case for every x ∈ A there is a unique element x∗ ∈ A such that ̂x∗ = ¯̂x.
Obviously, the mapping x → x∗ is an involution. Moreover,

‖x∗‖ = ‖̂x∗‖∞ = ‖x̂‖∞ = ‖x‖,

and hence
‖x∗x‖ = ‖̂x∗x‖∞ = ‖x̂ x̂‖∞ = ‖x̂‖2

∞ = ‖x‖2.

Thus A is a C∗-algebra. The main purpose of what follows is to show that
conversely for each commutative C∗-algebra A the Gelfand homomorphism is
an isometric ∗-isomorphism onto C0(Δ(A)). This is one of the most striking
results in Gelfand’s theory.

Example 2.4.2. (1) Let X be an arbitrary topological space. With the in-
volution given by f∗(x) = f(x) and the supremum norm ‖ · ‖∞, Cb(X) is
a commutative C∗-algebra. If X is a locally compact Hausdorff space, then
C0(X) is a C∗-subalgebra of Cb(X).

(2) Let H be a complex Hilbert space, and recall that for T ∈ B(H), T ∗

denotes the adjoint operator of T . Then B(H) is a C∗-algebra since ‖T ∗T ‖ =
‖T ‖2 holds for all T ∈ B(H). However, B(H) is not commutative whenever
dimH ≥ 2. K(H), the closed ideal consisting of all compact operators in H ,
is a C∗-subalgebra of B(H) because T ∗ is compact whenever T is.

(3) Suppose T ∈ B(H) is normal, that is, T ∗T = TT ∗, and let A(T ) de-
note the smallest closed subalgebra of B(H) containing T, T ∗ and the identity
operator of H . Then A(T ) is a commutative C∗-algebra with identity.

(4) The Gelfand–Naimark theorem [39] states that for every C∗-algebra
A there exists a Hilbert space H such that A is isometrically ∗-isomorphic to
some C∗-subalgebra of B(H).

(5) Let G be a locally compact Abelian group. Then L1(G) is a commuta-
tive Banach ∗-algebra. However, whenever G �= {e}, the L1-norm fails to be
a C∗-norm. In fact, it is not difficult to construct f ∈ L1(G) such that

‖f∗ ∗ f‖1 �= ‖f‖2
1



2.4 Commutative C∗-algebras 67

(Exercise 2.12.25).
(6) The assignment f → f∗, where f∗(z) = f(z), defines an involution

on the disc algebra A(D) (Example 1.1.7(2)). However, A(D) fails to be a
C∗-algebra (Exercise 1.6.15).

If A is a ∗-algebra, then so is Ae once we define

(a + λe)∗ = a∗ + λ̄e, a ∈ A, λ ∈ C.

Then Ae is a normed ∗-algebra with ‖a + λe‖ = ‖a‖ + |λ|, yet in general not
a C∗-algebra if A is. The following lemma, where we do not assume A to be
commutative, shows that nevertheless a different norm can be introduced on
Ae which extends the norm on A and turns Ae into a C∗-algebra.

Lemma 2.4.3. Let A be a C∗-algebra without identity. There exists a norm
‖ · ‖0 on Ae such that ‖a‖0 = ‖a‖ for all a ∈ A and (Ae, ‖ · ‖0) becomes a
C∗-algebra.

Proof. Let ‖ · ‖ denote the above norm on Ae; that is,

‖a + λe‖ = ‖a‖ + |λ|, a ∈ A, λ ∈ C.

For x ∈ Ae, let Lx : A → A be defined by Lx(a) = xa, a ∈ A. Then

‖Lxa‖ ≤ ‖x‖ · ‖a‖,

so that Lx is bounded and ‖Lx‖ ≤ ‖x‖.
We claim that ‖x‖0 = ‖Lx‖ defines a C∗-norm on Ae extending the given

norm on A. Note first that, for a ∈ A,

‖La(a∗)‖ = ‖aa∗‖ = ‖a‖2 = ‖a‖ · ‖a∗‖

and hence ‖La‖ ≥ ‖a‖ and therefore ‖La‖ = ‖a‖. Now, x → ‖x‖0 is a norm
on Ae as soon as we have seen that Lx = 0 implies x = 0. To this end let

x = b + λe, b ∈ A, λ ∈ C,

be such that xa = 0 for all a ∈ A. If λ �= 0, then a = (−(1/λ)b)a for all a ∈ A,
that is, u = −(1/λ)b is a left identity for A. Since

u∗ = uu∗ = (uu∗)∗ = (u∗)∗ = u,

and hence, for all a ∈ A,

au = au∗ = (ua∗)∗ = (a∗)∗ = a,

u is also a right identity for A. This contradiction yields x = b ∈ A, and
therefore x = 0 as ‖b‖ = ‖Lb‖. Moreover, ‖ · ‖0 is an algebra norm since
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‖xy‖0 = ‖Lxy‖ = ‖Lx ◦ Ly‖ ≤ ‖Lx‖‖Ly‖ = ‖x‖0‖y‖0,

and Ae is complete because A is complete and Ae/A is one-dimensional.
Finally, ‖ · ‖0 is a C∗-norm on Ae. Indeed, from

‖Lx(a)‖2 = ‖xa‖2 = ‖(xa)∗(xa)‖
= ‖a∗(x∗x)a‖ ≤ ‖a∗‖ · ‖Lx∗xa‖
≤ ‖a‖2‖Lx∗x‖

it follows that

‖x‖2
0 = ‖Lx‖2 ≤ ‖Lx∗x‖ = ‖x∗x‖0 ≤ ‖Lx∗‖‖Lx‖ = ‖x∗‖0‖x‖0,

and this in turn gives

‖x‖0 ≤ ‖x∗‖0 and ‖x∗‖0 ≤ ‖x∗∗‖0 = ‖x‖0.

Thus ‖x∗‖0 = ‖x‖0, and ‖x∗x‖0 ≤ ‖x∗‖0‖x‖0 = ‖x‖2
0. �	

Lemma 2.4.4. Let A be a commutative C∗-algebra. Then the Gelfand homo-
morphism is a ∗-homomorphism; that is, ̂x∗ = x̂ for all x ∈ A.

Proof. We have to show that ϕ(x∗) = ϕ(x) for ϕ ∈ Δ(A) and x ∈ A. Of
course, we can assume that A has an identity e. Let

ϕ(x) = α + iβ and ϕ(x∗) = γ + iδ,

α, β, γ, δ ∈ R. Towards a contradiction, assume that β + δ �= 0 and let

y = (β + δ)−1(x + x∗ − (α + γ)e) ∈ A.

Then y = y∗ and

ϕ(y) = (β + δ)−1(α + iβ + γ + iδ − (α + γ)) = i.

This implies that, for all t ∈ R,

ϕ(y + tie) = ϕ(y) + ti = (t + 1)i,

and hence |t + 1| ≤ ‖y + tie‖. Since y = y∗, the C∗-norm property gives

(t + 1)2 ≤ ‖y + tie‖2 = ‖(y + tie)(y + tie)∗‖
= ‖(y + tie)(y − tie)‖ = ‖y2 + t2e‖
≤ ‖y2‖ + t2.

However, this inequality cannot hold for large t. This shows that δ = −β and
therefore

ϕ((ix)∗) = ϕ(−ix∗) = −iϕ(x∗) = −i(γ + iδ) = −β − iγ.

On the other hand ϕ(ix) = i(α+ iβ) = −β + iα. Applying what we have seen
so far with ix in place of x, we obtain γ = α and hence ϕ(x∗) = ϕ(x). �	
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We are now ready to prove the first main result of this section.

Theorem 2.4.5. For a commutative C∗-algebra A the Gelfand homomor-
phism is an isometric ∗-isomorphism from A onto C0(Δ(A)).

Proof. To prove that x → x̂ is isometric, note first that if y = y∗ ∈ A, then
‖y‖2 = ‖y∗y‖ = ‖y2‖ and hence by induction ‖y‖2n

= ‖y2n‖ for all n ∈ N, so
that

rA(y) = lim
n→∞

‖y2n‖1/2n

= ‖y‖.

If now x ∈ A is arbitrary, then by what we have just seen,

rA(x∗x) = ‖x∗x‖ = ‖x‖2.

Recalling that ̂x∗ = x̂ (Lemma 2.4.4) and σA(x) \ {0} ⊆ x̂(Δ(A)) ⊆ σA(x)
(Theorem 2.2.5) we conclude that

‖x̂‖2
∞ = ‖x̂ x̂‖∞ = ‖(x∗x)∧‖∞ = rA(x∗x) = ‖x‖2.

Thus x → x̂ is isometric and, in particular, the image ̂A of A is complete with
respect to the supremum norm and hence closed in C0(Δ(A)). On the other
hand, ̂A is a ∗-subalgebra of C0(Δ(A)) which strongly separates the points of
Δ(A) (Theorem 2.2.7). Thus ̂A is dense in C0(Δ(A)) by the Stone–Weierstrass
theorem. This proves that ̂A = C0(Δ(A)). �	

The preceding theorem, together with the following corollary, sets up a
bijection between the homeomorphism classes of locally compact Hausdorff
spaces and the isomorphism classes of commutative C∗-algebras.

Corollary 2.4.6. For two commutative C∗- algebras A and B the following
are equivalent.

(i) Δ(A) and Δ(B) are homeomorphic.
(ii) There exists an isometric ∗-isomorphism between A and B.
(iii) There exists an algebra isomorphism between A and B.

Proof. The implication (ii) ⇒ (iii) is trivial and, as we have seen earlier
(Lemma 2.2.10), the implication (iii) ⇒ (i) holds even for general commu-
tative Banach algebras A and B. To prove (i) ⇒ (ii), note first that if
φ : Δ(A) → Δ(B) is a homeomorphism, then f → f ◦ φ is an isometric
isomorphism from C0(Δ(B)) onto C0(Δ(A)) satisfying f → f ◦ φ. On the
other hand, by Theorem 2.4.5, A and B are isometrically ∗-isomorphic to
C0(Δ(A)) and C0(Δ(B)), respectively. It follows that A and B are isometri-
cally ∗-isomorphic. �	

Corollary 2.4.7. Let A be a commutative C∗-algebra. For x ∈ A consider
the following conditions.
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(i) x = x∗.
(ii) σA(x) ⊆ R.
(iii) x̂ is real-valued.
(iv) x = y∗y for some y ∈ A.
(v) σA(x) ⊆ [0,∞).
(vi) x̂ ≥ 0.

Then (i), (ii), and (iii) are equivalent, and so are (iv), (v), and (vi).

Proof. The equivalence of (ii) and (iii) and of (v) and (vi) follows immediately
from

x̂(Δ(A)) ∪ {0} = σA(x) ∪ {0}.

The Gelfand homomorphism is injective and satisfies ̂x∗ = x̂. Therefore (i)
and (iii) are equivalent. If (iv) holds, then x̂ = ̂y∗y = ŷ ŷ ≥ 0. Conversely,
if x̂ ≥ 0, let f ∈ C0(Δ(A)) be the positive square root of x̂. The Gelfand
homomorphism being surjective, there exists y ∈ A such that ŷ = f . Now y
satisfies ̂y∗y = x̂ and hence y∗y = x. �	

In the sequel we present two applications of Theorem 2.4.5. The first one
(Theorem 2.4.9) is the construction of a functional calculus in which contin-
uous functions act on elements of a commutative C∗-algebra, and the second
(Theorem 2.4.12) concerns the existence of a Stone–Čech compactification for
a completely regular topological space.

We know that in general the spectrum of an element in a Banach algebra
may become larger upon passing to a subalgebra. We need that for C∗-algebras
this cannot happen as we observe next.

Lemma 2.4.8. Let A be a commutative C∗-algebra with identity e and B a
C∗-subalgebra of A containing e. Then σA(x) = σB(x) for each x ∈ B.

Proof. It suffices to show that if y ∈ B is invertible in A, then y is already
invertible in B. Let y ∈ B ∩ G(A) and note first that y∗ ∈ G(A) since

(y−1)∗y∗ = (yy−1)∗ = e∗ = ee∗ = (e∗e)∗ = e∗∗ = e.

Thus yy∗ ∈ G(A) and, by Theorem 2.2.5, ̂yy∗(Δ(A)) = σA(yy∗). On the other
hand, by Lemma 2.4.4,

̂yy∗(Δ(A)) = {ϕ(yy∗) : ϕ ∈ Δ(A)} = {|ϕ(y)|2 : ϕ ∈ Δ(A)}.

Hence σA(yy∗) ⊆ [0,∞), so that ρA(yy∗) = C\σA(yy∗) is connected. Theorem
1.2.12 now yields

σB(yy∗) = σA(yy∗).

Therefore, yy∗ is invertible in B and hence so is y. �	
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Theorem 2.4.9. Let A be a commutative C∗-algebra with identity e and x ∈
A. Let A(x) denote the smallest C∗-subalgebra of A containing x and e. There
exists a unique isometric ∗-isomorphism

φ : C(σA(x)) → A(x), f → f(x)

with the property that φ maps the constant function 1 onto e and the function
λ → λ onto x.

Proof. Because σA(x) = σA(x)(x) by Lemma 2.4.8, we can assume that A =
A(x). This means that the set of all polynomials in x, x∗, and e is dense in
A. Let f ∈ C(σA(x)) denote the function f(λ) = λ, and suppose that φ1

and φ2 are isometric ∗-isomorphisms from C(σA(x)) onto A = A(x) with
φj(1σA(x)) = e and φj(f) = x. Then

φ−1
j (x∗) = φ−1

j (x) = f̄ , j = 1, 2,

so that φ−1
1 and φ−1

2 coincide on all polynomials in x, x∗ and e. Since A = A(x)
and φ−1

1 and φ−1
2 are continuous, we conclude that φ−1

1 = φ−1
2 .

To prove the existence of φ, we show first that ϕ → ϕ(x) defines a home-
omorphism between Δ(A) and σA(x). Every ϕ ∈ Δ(A) is determined by
its value at x since ϕ is continuous, A is generated by x, x∗, and e, and
ϕ(x∗) = ϕ(x) and ϕ(e) = 1. Thus ϕ → ϕ(x) is injective. On the other hand,
x̂(Δ(A)) = σA(x) by Theorem 2.2.5. Clearly, the map ϕ → ϕ(x) from Δ(A)
onto σA(x) is continuous, and hence it is a homeomorphism since Δ(A) is com-
pact and σA(x) is a Hausdorff space. Let ψ denote the associated isometric
∗-isomorphism between C(σA(x)) and C(Δ(A)); that is,

ψ(g)(ϕ) = g(ϕ(x)), g ∈ C(σA(x)), ϕ ∈ Δ(A).

By Theorem 2.4.5 the Gelfand homomorphism y → ŷ is an isometric ∗-
isomorphism from A = A(x) onto C(Δ(A)). Composing its inverse with ψ,
we obtain an isometric ∗-isomorphism φ : C(σA(x)) → A = A(x) given by

φ(g) = y if and only if ŷ(ϕ) = g(ϕ(x)) for all ϕ ∈ Δ(A).

Then φ has the required properties since 1σA(x)(ϕ(x)) = 1 = ê(ϕ) and
f(ϕ(x)) = ϕ(x) = x̂(ϕ) for all ϕ ∈ Δ(A). �	

Remark 2.4.10. Returning to Example 2.4.2, let T be a normal operator in
a Hilbert space H and A(T ) the closed subalgebra of B(H) generated by T, T ∗

and the identity operator I on H . According to the preceding theorem, there
is a unique isometric ∗-isomorphism from C(σ(T )) onto A(T ) which maps the
function f(λ) = λ to T and the constant one function to I. This result can
be used to derive the spectral theorem for normal operators in Hilbert spaces.
Because of this, Theorem 2.4.9 is often referred to as the abstract spectral
theorem.



72 2 Gelfand Theory

For the second application of Theorem 2.4.5 mentioned above we first
recall some notions from topology.

Definition 2.4.11. Let X be a Hausdorff space. A pair (Y, β), consisting of a
compact Hausdorff space Y and a mapping β : X → Y , is called a Stone–Čech
compactification of X, if the following conditions are satisfied.

(i) β(X) is dense in Y , and β : X → β(X) is a homeomorphism.
(ii) Every f ∈ Cb(X) extends continuously to Y in the sense that there exists

˜f ∈ C(Y ) such that ˜f(β(x)) = f(x) for all x ∈ X .

Of course, ˜f is then uniquely determined since β(X) is dense in Y .

Suppose now that X possesses a Stone–Čech compactification (Y, β). Then
given a closed subset E of X and x ∈ X \ E, there exists f ∈ Cb(X) such
that f |E = 0 and f(x) �= 0. In fact, if C is a closed subset of Y with C ∩
β(X) = β(E), then β(x) �∈ C, and hence by Urysohn’s lemma we find g ∈
C(Y ) such that g(β(x)) �= 0 and g|C = 0. Now, f = g ◦ β ∈ Cb(X) has
the desired properties. A Hausdorff space X for which Cb(X) shares this
separation property is called complelety regular.

Stone and Čech proved that every completely regular space admits a
Stone–Čech compactification, which is uniquely determined up to homeomor-
phisms. We conclude this section by showing that the existence of a Stone–
Čech compactification can be obtained as an application of Gelfand’s theory.

Theorem 2.4.12. Let X be a completely regular topological space. Let Y =
Δ(Cb(X)) and define β : X → Y by β(x) = ϕx, where ϕx denotes the evalua-
tion of functions in C(Y ) at x. Then (Y, β) is a Stone–Čech compactification
of X.

Proof. Cb(X) is a commutative C∗-algebra with identity. Therefore, Y =
Δ(Cb(X)) is compact, and the Gelfand homomorphism f → ̂f is an isometric
∗-isomorphism from Cb(X) onto C(Y ). The map

β : X → Y, x → ϕx

is one-to-one because given distinct points x1 and x2 in X , the complete
regularity of X guarantees the existence of some f ∈ Cb(X) with

ϕx1(f) = f(x1) �= f(x2) = ϕx2(f).

Condition (ii) of Definition 2.4.11 is satisfied with ˜f = ̂f since, by definition
of β,

̂f(β(x)) = ̂f(ϕx) = ϕx(f) = f(x)

for all f ∈ Cb(X) and x ∈ X .
To verify that β : X → β(X) is a homeomorphism, for x0 ∈ X, ε > 0, and

f1, . . . , fn ∈ Cb(X) consider the sets
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V = {x ∈ X : |fi(x) − fi(x0)| < ε, 1 ≤ i ≤ n} ⊆ X

and

U = {ϕx ∈ β(X) : |ϕx(fi) − ϕx0(fi)| < ε, 1 ≤ i ≤ n} ⊆ β(X).

Then V = β−1(U) and V is open in X . These sets U form an open basis
for the relative topology on β(X) ⊆ Y = Δ(Cb(X)). Hence β is continuous,
and for β to be open it suffices to show that such sets V form a basis for the
topology on X . For that, let W be an open subset of X containing x0. Then,
since X is completely regular, there exists f ∈ Cb(X) such that f(x0) �= 0
and f |X\W = 0. It follows that

x0 ∈ {x ∈ X : |f(x) − f(x0)| < |f(x0)|} ⊆ W.

To complete the proof of the theorem it remains to show that β(X) is dense
in Y . Assuming the contrary, there exists g ∈ C(Y ) such that g �= 0, but
g|β(X) = 0. The Gelfand homomorphism maps Cb(X) onto C(Y ). Thus we
find f ∈ Cb(X) such that ̂f = g. Then

0 = g(ϕx) = ̂f(ϕx) = ϕx(f) = f(x)

for all x ∈ X . However, f = 0 implies g = 0. This contradiction shows that
β(X) is dense in Y . �	

2.5 The uniform algebras P (X) and R(X)

The next two sections centre around elaborating the Gelfand representation
of certain algebras of continuous functions on compact spaces.

Definition 2.5.1. Let X be a compact Hausdorff space. A closed subalgebra
A of C(X), equipped with the ‖ · ‖∞-norm, is called a uniform algebra if A
separates the points of X and contains the constant functions.

In Example 1.1.2 we have already introduced, for X a compact subset of
C, the uniform algebras P (X), R(X), and A(X). The definitions in the more
general case of a compact subset of Cn are analogous. Instead of polynomials,
rational functions, and holomorphic functions in one variable we simply have
to take such functions in n complex variables.

Remark 2.5.2. If A is a uniform algebra on X then, because X is compact
and Δ(A) is a Hausdorff space, the mapping φ : x → ϕx, where ϕx(f) = f(x)
for f ∈ A, is a homeomorphism of X onto its range φ(X) ⊆ Δ(A). In general,
however, φ(X) is a proper subset of Δ(A).
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Our goal is to determine the structure spaces of P (X), R(X), and A(X).
In this section we treat P (X) and R(X) for X ⊆ Cn and in the next section
A(X) for X ⊆ C. Moreover, we study the problem of when equality holds for
any of the inclusions P (X) ⊆ R(X) and R(X) ⊆ A(X).

Example 2.5.3. Let D = {z ∈ C : |z| ≤ 1} and T = {z ∈ C : |z| = 1}, the
boundary of D.

(1) The algebra P (D) is generated by the function f(z) = z, z ∈ D. Now,
σP (D)(f) = D. In fact, if |λ| > 1, then the function

z → 1
λ − f(z)

=
1
λ

1
1 − z

λ

=
1
λ

∞
∑

n=0

( z

λ

)n

is a uniform limit of polynomials on D, and hence the function λ−f is invert-
ible in P (D). Thus, by Lemma 2.3.3, the mapping z → ϕz, where ϕz(g) = g(z)
for g ∈ P (D), is a homeomorphism between D and the structure space of P (D).

By the maximum modulus principle, the mapping r : g → g|T is an iso-
metric isomorphism from P (D) onto P (T). It follows that Δ(P (T)) = D via
the mapping z → ϕz , ϕz(h) = r−1(h)(z) for h ∈ P (T).

(2) We claim that P (D) = A(D) �= C(D). Since the function z → z fails to
be holomorphic, A(D) �= C(D). To show that P (D) = A(D), let f ∈ A(D) and
for 0 < t < 1, define ft by ft(z) = f(tz). Then ft is a holomorphic function
on {z ∈ C : |z| < 1/t}, and ft → f uniformly on D as t → 1 because f is
uniformly continuous on D. Finally, ft admits a power series representation
and hence can be uniformly approximated by polynomials on D. Thus f is a
uniform limit of polynomials on D, as required.

Definition 2.5.4. Let X be a compact subset of C
n. The polynomially convex

hull, ̂Xp, of X is the set

̂Xp = {z ∈ C
n : |p(z)| ≤ ‖p|X‖∞ for all polynomials p}.

Then, by Definition 2.3.4, X is polynomially convex if and only if X = ̂Xp.
The rational convex hull ̂Xr of X is the set of all z ∈ Cn such that

|p(z)| ≤ |q(z)| ·
∥

∥

∥

∥

p

q
|X
∥

∥

∥

∥

∞

for all polynomials p and q with q �= 0 on X . Finally, X is said to be rationally
convex if ̂Xr = X .

We continue with some simple observations concerning ̂Xp and ̂Xr.

Remark 2.5.5. (1) Clearly, X ⊆ ̂Xr ⊆ ̂Xp. In particular, if X is polynomially
convex, then it is rationally convex.

(2) Each compact subset of C is rationally convex. Indeed, if z0 ∈ C \ X ,
then q(z) = z − z0 satisfies 1 > 0 = |q(z0)| · ‖(1/q)|X‖∞. On the other hand,
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recall that X is polynomially convex if and only if C\X is connected (Theorem
2.3.7).

(3) Both ̂Xp and ̂Xr are compact. To verify this, since these sets are
closed and ̂Xr ⊆ ̂Xp, it is enough to show that ̂Xp is bounded. Now, with
pj(z) = zj, 1 ≤ j ≤ n, for every z ∈ ̂Xp,

‖z‖2 =
n
∑

j=1

|pj(z)|2 ≤
n
∑

j=1

‖pj |X‖2
∞.

Lemma 2.5.6. For any compact subset X of Cn,

̂Xr = {z ∈ C
n : p(z) ∈ p(X) for every polynomial p}.

Proof. Let z ∈ Cn and suppose that there is a polynomial p such that p(z) �∈
p(X). Then q(w) = p(w) − p(z) is non-zero on X and

1 > 0 = |q(z)| ·
∥

∥

∥

∥

1
q
|X
∥

∥

∥

∥

∞
,

so that z �∈ ̂Xr. Conversely, if z �∈ ̂Xr, then there are polynomials p and q,
with q �= 0 on X , such that

|p(z)| > |q(z)| ·
∥

∥

∥

∥

p

q

∣

∣

X

∥

∥

∥

∥

∞
.

In particular, p(z) �= 0. If q(z) = 0, we are done since 0 /∈ q(X). Otherwise,
replacing p by g = q(z)p(z)−1p, we get that g(z) = q(z) and

∥

∥

∥

∥

g

q

∣

∣

X

∥

∥

∥

∥

∞
=
∣

∣

∣

∣

q(z)
p(z)

∣

∣

∣

∣

·
∥

∥

∥

∥

p

q

∣

∣

X

∥

∥

∥

∥

∞
< 1.

Then the polynomial f = q − g satisfies f(z) = 0 and 0 �∈ f(X), for if x ∈ X
and f(x) = 0, then (g/q)(x) = 1 contradicting ‖(g/q)|X‖∞ < 1. �	

We can now work out the Gelfand representation of P (X) and R(X).

Theorem 2.5.7. Let X be a compact subset of Cn.

(i) The restriction map φ : f → f |X is an isometric isomorphism from P ( ̂Xp)
onto P (X). Moreover, for x ∈ ̂Xp, define ϕx : P (X) → C by

ϕx(f) = φ−1(f)(x), f ∈ P (X).

Then x → ϕx is a homeomorphism from ̂Xp onto Δ(P (X)).
(ii) The map φ : f → f |X is an isometric isomorphism from R( ̂Xr) onto

R(X), and x → ϕx, where

ϕx(f) = φ−1(f)(x), f ∈ R(X), x ∈ ̂Xr,

is a homeomorphism between ̂Xr and Δ(R(X)).
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Proof. (i) The map q|
̂Xp

→ q|X takes the dense subalgebra of P ( ̂Xp) consist-

ing of all polynomial functions on ̂Xp homomorphically onto the corresponding
subalgebra of P (X). This map preserves the norm since

|q(z)| ≤ ‖q|X‖∞

for all polynomials q and all z ∈ ̂Xp. It follows that φ is an isometric isomor-
phism from P ( ̂Xp) onto P (X). For each x ∈ ̂Xp, ϕx as defined above belongs
to Δ(P (X)), and the mapping x → ϕx, ̂Xp → Δ(P (X)) is injective. It is
continuous since

x → ϕx(f) = φ−1(f)(x)

is a continuous function on ̂Xp for every f ∈ P (X). Hence x → ϕx maps ̂Xp

homeomorphically onto its image in Δ(P (X)). It remains to show that given
ϕ ∈ Δ(P (X)), there exists x ∈ ̂Xp such that ϕ = ϕx. To that end, let xj =
ϕ(pj |X), where pj(z) = zj, 1 ≤ j ≤ n. We claim that x = (x1, . . . , xn) ∈ ̂Xp

and ϕ = ϕx. For any polynomial q,

q(x) = q(ϕ(p1|X), . . . , ϕ(pn|X)) = ϕ(q|X),

and hence |q(x)| ≤ ‖q|X‖∞. This proves x ∈ ̂Xp, and ϕ = ϕx follows from

ϕx(pj |X) = pj(x) = xj = ϕ(pj |X),

1 ≤ j ≤ n, since the functions pj |X generate P (X).
(ii) is proved in very much the same way as (i). Note first that if f =

(p/q)|
̂Xr

, where p and q are polynomials with q �= 0 on ̂Xr, then ‖f‖∞ =
‖f |X‖∞ since for each x ∈ ̂Xr,

|p(x)| ≤ |q(x)| ·
∥

∥

∥

∥

p

q

∣

∣

X

∥

∥

∥

∥

∞
.

Consequently, f → f |X maps the dense subalgebra of rational functions in
R( ̂Xr) homomorphically and isometrically onto a dense subalgebra of R(X).
This yields the first statement in (ii).

Clearly, for each x ∈ ̂Xr,

ϕx(f) = φ−1(f)(x), f ∈ R(X),

defines an element of Δ(R(X)), and the mapping x → ϕx, ̂Xr → Δ(R(X)) is
injective and continuous. What is left to be shown is that every ϕ ∈ Δ(R(X))
is of the form ϕ = ϕx for some x ∈ ̂Xr. Given ϕ, as in (i) define x =
(x1, . . . , xn) ∈ Cn by

xj = ϕ(pj |X), 1 ≤ j ≤ n.
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Now, for every polynomial q,

q(x) = q(ϕ(p1|X), . . . , ϕ(pn|X)) = ϕ(q|X) = ̂q|X(ϕ) ∈ σR(X)(q|X) = q(X).

According to Lemma 2.5.6 this shows that x ∈ ̂Xr. Finally, ϕx(pj |X) = xj =
ϕ(pj |X) implies ϕx(p|X) = ϕ(p|X) and hence

ϕx

(

p

q

∣

∣

X

)

= ϕx(p|X)ϕx(q|X)−1 = ϕ(p|X)ϕ(q|X)−1 = ϕ

(

p

q

∣

∣

X

)

for all polynomials p and q with q �= 0 on X . It follows that ϕ = ϕx. �	

In the proof of part (i) of Theorem 2.5.7, for surjectivity of the map x → ϕx

from ̂Xp to Δ(P (X)) we could alternatively have appealed to the proof of
Theorem 2.3.6. We now obtain the following approximation result.

Theorem 2.5.8. If X is a compact subset of Cn, then P (X) = R(X) if and
only if ̂Xp = ̂Xr. In particular, for a compact subset X of C, P (X) = R(X)
if and only if C \ X is connected.

Proof. Suppose first that P (X) = R(X), and let x ∈ ̂Xp. Then the function
ϕx : f → (φ−1f)(x), where φ is as in part (i) of Theorem 2.5.7, defines an
element of Δ(P (X)) = Δ(R(X)). By Theorem 2.5.7(ii), ϕx = ϕy for some
y ∈ ̂Xr. It follows that

q(y) = ϕy(q|X) = ϕx(q|X) = q(x)

for all polynomials q, so that x = y. This shows ̂Xp ⊆ ̂Xr and hence ̂Xp = ̂Xr

(Remark 2.5.2).
Conversely, let ̂Xp = ̂Xr. To prove R(X) ⊆ P (X) it suffices to show that

if q is a polynomial such that q(z) �= 0 for all z ∈ X , then q|X is invertible in
P (X). Now, by Lemma 2.5.6, q has no zero on ̂Xr. Since ̂Xr = ̂Xp = Δ(P (X)),
this implies ϕ(q|X) �= 0 for every ϕ ∈ Δ(P (X)). Therefore q|X is contained
in no maximal ideal of P (X), and therefore is invertible in P (X).

Finally, suppose that n = 1. If C \X is connected, then X is polynomially
convex (Theorem 2.3.7) and hence ̂Xr = ̂Xp. Conversely, if ̂Xp = ̂Xr then,
because every compact subset of C is rationally convex (Remark 2.5.5), X is
polynomially convex and hence C \ X is connected. �	

Next we show an interesting result about generation of R(X).

Theorem 2.5.9. If X is a compact subset of Cn, then R(X) is generated by
n + 1 elements.

Proof. The set of n + 1 generators we produce consists of the coordinate
functions pj(z) = zj, z ∈ X, 1 ≤ j ≤ n, and an additional function f which
has to be constructed. Notice first that since P (X) contains a countable dense
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subset, there exists a sequence of polynomials qm, m ∈ N, such that qm �= 0
on X and the set

{

p

qm

∣

∣

X
: m ∈ N, p a polynomial

}

is dense in R(X). Let gm = qm|X , and by induction define positive real num-
bers cm, m ∈ N, so that

cm

∥

∥g−1
m

∥

∥

∞ < 2−m and cm

∥

∥g−1
m gk

∥

∥

∞ < 2−mck

for 1 ≤ k ≤ m − 1. Then the series
∑∞

k=1 ckg−1
k (z) converges uniformly on X

and hence defines an element f of R(X). We claim that A, the unital closed
subalgebra of R(X) generated by f and all the pj , 1 ≤ j ≤ n, coincides with
R(X).

The set of functions of the form (pg−1
m )|X , m ∈ N, p a polynomial, is dense

in R(X). Therefore it is enough to show that g−1
m ∈ A for every m ∈ N. Let

fm =
∞
∑

k=m

ckg−1
k ∈ R(X).

Next, observe that, for each m ∈ N, g−1
m ∈ A provided that fm ∈ A. Indeed,

this can be seen as follows. If fm ∈ A, then fmgm ∈ A and, by the choice of
ck,

∥

∥fmgm − cm

∥

∥

∞ =
∥

∥

∥

∥

∞
∑

k=m+1

ckgmg−1
k

∥

∥

∥

∥

∞
≤

∞
∑

k=m+1

ck

∥

∥gmg−1
k

∥

∥

∞

≤ cm

∞
∑

k=m+1

2−k < cm.

Thus fmgm is invertible in A, and hence so is gm. It now follows by induc-
tion that fm ∈ A for all m ∈ N. Indeed, f1 = f ∈ A, and supposing that
f1, . . . , fm ∈ A, by the preceding paragraph, g−1

1 , . . . , g−1
m ∈ A. It follows that

fm+1 = f −
m
∑

k=1

ckg−1
k ∈ A.

This finishes the proof of the theorem. �	

It is worth pointing out that we have not proved that R(X) admits a
system of n + 1 generators, each of which is a rational function. In fact, this
strengthened version is false, as can already be seen in the plane: if X is a
compact subset of C and C\X has infinitely many connected components, then
R(X) cannot be generated by a finite family of rational functions (Exercise
2.12.41) even though it is doubly generated as a Banach algebra.

A nice geometric consequence of Theorem 2.5.9 and the previous results
is the following
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Corollary 2.5.10. Every rationally convex compact subset of Cn is homeo-
morphic to some polynomially convex subset of Cn+1.

Proof. If X is a compact subset of Cn and rationally convex, then X =
Δ(R(X)) by Theorem 2.5.7. On the other hand, R(X) is generated by n + 1
elements f1, . . . , fn+1, and hence, by Lemma 2.3.3, Δ(R(X)) is homeomorphic
to the joint spectrum

σR(X)(f1, . . . , fn+1) ⊆ C
n+1,

which is polynomially convex by Theorem 2.3.6. �	

We proceed by constructing a compact subset X of C with empty interior
such that R(X) �= C(X). This example is usually called Swiss cheese, a label
which becomes apparent from the construction.

Example 2.5.11. As before, let D denote the closed unit disc. We are going
to show the existence of a sequence of closed discs Δj , j ∈ N, of radii rj > 0
with the following properties.

(1) Δj ⊆ D
◦ = {z ∈ C : |z| < 1} and Δj ∩ Δk = ∅ for j �= k.

(2)
∑∞

j=1 rj < 1.
(3) D \

⋃∞
j=1 Δ◦

j has an empty interior.

Let y1, y2, . . . be a numbering of the countable set of complex numbers α+iβ ∈
D◦ with α, β rational. We construct by induction on n a sequence (Δn)n of
closed discs such that (1) holds for 1 ≤ j ≤ k ≤ n, 0 < rj < 2−j for 1 ≤ j ≤ n
and

y1, . . . , yn ∈
n
⋃

j=1

Δj =
n
⋃

j=1

Δ◦
j .

For y ∈ C and r > 0, let B(y, r) denote the closed disc of radius r around y.
Choose 0 < r1 < 1

2 such that Δ1 = B(y1, r1) ⊆ D
◦. Suppose that Δ1, . . . , Δn

with the required properties have been found. Then ym �∈
⋃n

j=1 Δj for some
m ≥ n + 1. Indeed, otherwise yk ∈

⋃n
j=1 Δj for all k and hence, because the

set {yk : k ∈ N} is dense in D◦, D◦ =
⋃n

j=1 Δj , which is impossible. Let m be
minimal such that ym �∈

⋃n
j=1 Δj , and choose 0 < rn+1 < 2−(n+1) such that

Δn+1 = B(ym, rn+1) satisfies

Δn+1 ⊆ D
◦ and Δn+1 ∩

⎛

⎝

n
⋃

j=1

Δj

⎞

⎠ = ∅.

This finishes the inductive step. It is obvious that the sequence (Δj)j has
properties (1) and (2).

Now, let X = D \
⋃∞

j=1 Δ◦
j . Then X has empty interior because yn ∈

⋃n
j=1 Δ◦

j for each n. So (3) holds also.
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To prove that R(X) �= C(X), we construct a bounded linear functional l
on C(X) such that l �= 0 and l|R(X) = 0. Let zj denote the centre of Δj , j ∈ N,
and let Γj , j ∈ N, be the curve defined by

Γj(t) = zj + rje
it, t ∈ [0, 2π].

Moreover, define Γ0 by

Γ0(t) = e−it, t ∈ [0, 2π].

For f ∈ C(X), let

l(f) =
∞
∑

j=0

∫

Γj

f(z)dz.

Note that since
∑∞

j=1 rj < ∞ and
∣

∣

∣

∣

∣

∫

Γj

f(z)dz

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

rj

∫ 2π

0

f(zj + rje
it)ieitdt

∣

∣

∣

∣

≤ 2πrj‖f‖∞,

the above series converges absolutely, and therefore l defines a bounded linear
functional on C(X).

Now,
∫

Γ0
z̄dz = −2πi and

∫

Γj

z̄dz = irj

∫ 2π

0

(zj + rje
−it)eitdt = 2πir2

j

for j ≥ 1. Thus, by property (2),

l(z → z̄) = 2πi

⎛

⎝

∞
∑

j=1

r2
j − 1

⎞

⎠ �= 0.

It remains to show that l|R(X) = 0.
To that end, let p and q be complex polynomials such that q(z) �= 0 for

all z ∈ X . Then q �= 0 on some open neighbourhood V of X . Let Xn =
D \

⋃n
j=1 Δ◦

j , so that Xn+1 ⊆ Xn for all n and X =
⋂∞

n=1 Xn. It follows
that Xn ⊆ V for all n ≥ n0 for some n0 ∈ N. We want to apply Cauchy’s
integral formula to the holomorphic function f = (p/q)|V and the closed
curves Γ0, Γ1, . . . , Γn in V , n ≥ n0. For every point z �∈ Γj([0, 2π]), let w(Γj , z)
denote the winding number of Γj with respect to z. If z ∈ C \ V, then either
z �∈ D and hence w(Γj , z) = 0 for all j ∈ N0, or z ∈ D. In the latter case,
z ∈

⋃n
j=1 Δ◦

j because D \
⋃n

j=1 Δ◦
j = Xn ⊆ V for n ≥ n0, and therefore

z ∈ Δ◦
j for exactly one j ∈ N. This implies that

n
∑

k=0

w(Γk, z) = w(Γj , z) + w(Γ0, z) = 1 − 1 = 0.
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Thus we have seen that Σn
k=0w(Γk, z) = 0 for all z ∈ C \ V and n ≥ n0. A

version of Cauchy’s integral formula (see [23, p. 206]) now yields that

n
∑

j=0

∫

Γj

f(z)dz = 0

for all n ≥ n0 and hence l(f |X) = 0. Since l is continuous, it follows that
l|R(X) = 0.

The next theorem holds more generally for compact subsets of C of
Lebesgue measure zero and in this generality is referred to as the Hartogs–
Rosenthal theorem.

Theorem 2.5.12. Let X be a countable compact subset of C. Then P (X) =
C(X).

Proof. We first observe that C\X is connected. To see this, let z1, z2 ∈ C\X .
Since X is countable, there is a ray L emanating from z1 which does not
intersect X . For any point z ∈ L, let z, z2 denote the line segment connecting
z and z2. Again, because X is countable, one of them, say z, z2, misses X . So
z1 and z2 are connected in C \ X by z1, z ∪ z, z2. Theorem 2.5.5 now shows
that P (X) = R(X).

It remains to show that R(X) = C(X). Let μ ∈ C(X)∗, that is, a bounded
regular Borel measure on X , and suppose that μ is nonzero and nevertheless
annihilates R(X). Note that, for every z ∈ C\X , the function w → 1/(w− z)
belongs to R(X) and hence

∫

X
1/(w− z)dμ(w) = 0. Since suppμ is countable

and compact, at least one of the points of suppμ is open in supp μ. So there
exist z0 and an open disc U centered at z0 of radius R > 0 such that μ({z0}) �=
0 and U ∩ supp μ = {z0}. Since X is countable, we find 0 < r < R such that
the path γ(t) = z0 + reit, t ∈ [0, 2π], does not meet X . An easy application of
Fubini’s theorem shows that

∫

γ

(∫

X

1
w − z

dμ(w)
)

dz =
∫

X

(∫

γ

1/(w − z)dz

)

dμ(w).

Now the left-hand side of this equation is zero since X ∩ γ[0, 2π] = ∅ and
∫

X
1/(w − z)dμ(w) = 0 for every z �∈ X . On the other hand, the right-hand

side is nonzero. To see this, note first that if w ∈ supp μ, then either w �∈ U or
w = z0. In the first case,

∫

γ 1/(w − z)dz = 0, whereas
∫

γ 1/(w − z)dz = −2πi
in the second case. It follows that

∫

X

(∫

γ

1
w − z

dz

)

dμ(w) = −2πiμ({z0}) �= 0.

This contradiction shows that there is no nonzero μ ∈ C(X)∗ annihilating
R(X). Thus R(X) = C(X) by the Hahn–Banach theorem. �	
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Since a countable compact subset of C has empty interior, Theorem 2.5.12
is a very special case of Mergelyan’s theorem which states that if X is a com-
pact subset of C such that C \ X is connected, then P (X) = A(X). It is also
worth pointing out that R(X) = C(X) holds more generally whenever X is
totally disconnected. In fact, this follows from Corollary 3.5.6 because every
compact subset X of C is rationally convex (Remark 2.5.5) and therefore
homeomorphic to Δ(R(X)) (Theorem 2.5.7). However, the proof of Corollary
3.5.6 relies on Shilov’s idempotent theorem. A somewhat surprising conse-
quence of Theorem 2.5.12 is the following corollary.

Corollary 2.5.13. Let X be a countable compact Hausdorff space and let A
be a closed subalgebra of C(X). Then A is self-adjoint.

Proof. Let f ∈ A. Then f(X) ∪ {0} is a countable compact subset of C. By
the preceding theorem there exists a sequence of polynomials pn, n ∈ N, such
that pn(z) → z uniformly on f(X) ∪ {0}. Let qn = pn − pn(0). Then each
qn is a polynomial without constant term and qn(z) → z uniformly on f(X).
Thus qn(f(x)) → f(x) uniformly on X . Since qn is without constant term,
qn ◦ f ∈ A. This proves that f ∈ A. �	

In concluding this section we present a theorem (Theorem 2.5.15 below),
which is usually referred to as Wermer’s maximality theorem. The proof re-
quires the following lemma.

Lemma 2.5.14. Let X be a compact Hausdorff space and A a uniform algebra
on X. If f and g are functions in A such that ‖1 + f + g‖∞ < 1, then f + g
is invertible in A.

Proof. Let h = f + g and c = ‖1+Reh‖∞. Since ‖1+ f + g‖∞ < 1 and hence
‖1 + f + g‖∞ < 1, we have

‖1 + Re h‖∞ =
1
2
‖1 + f + g + 1 + f + g‖∞ < 1.

Thus, for all x ∈ X, |1 + Reh(x)| ≤ c < 1. This means that h(x) lies in the
left half-plane for all x, which suggests that, for small ε > 0, 1 + ε h(x) lies in
the unit disc for all x. In fact,

|1 + εh(x)|2 = 1 + 2ε Reh(x) + ε2|h(x)|2

≤ 1 + 2ε(c − 1) + ε2‖h‖2
∞,

for all x ∈ X. Since c < 1, it follows that ‖1 + εh‖∞ < 1 for sufficiently small
ε > 0. This εh is invertible (Lemma 1.2.6) and hence so is h. �	

Theorem 2.5.15. Let A be a uniform algebra on the unit circle T such that
P (T) ⊆ A. Then either A = P (T) or A = C(T).
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Proof. For h ∈ C(T) and k ∈ Z, let

ck(h) =
1
2π

∫ 2π

0

h(eit)e−iktdt,

the k-th Fourier coefficient of h. Then h ∈ P (T) if and only if ck(h) = 0 for
all k < 0.

Now suppose that A �= P (T). Then there exists h ∈ A with ck(h) �= for
some k < 0. Without loss of generality we can assume that c−1(h) = 1. Indeed,
the function g defined by g(z) = h(z)z−(k+1) belongs to A since A ⊇ P (T)
and −(k+1) ≥ 0 and c−1(g) = ck(h) �= 0. Choose a trigonometric polynomial
r with ‖h − r‖∞ < 1

2 and define s ∈ C(T) by

s(z) = r(z) + (1 − c−1(r))z−1.

Then c−1(s) = c−1(r) + (1 − c−1(r)) = 1 and

‖s − h‖∞ ≤ ‖r − h‖∞ + |1 − c−1(r)| = ‖r − h‖∞ + |c−1(h − r)|
≤ 2‖h− r‖∞ < 1.

Thus s is of the form

s(z) =
−2
∑

k=−N

ck(s)zk + z−1 +
N
∑

k=0

ck(s)zk

for some N ∈ N. It follows that

zs(z) =
−2
∑

k=−N

ck(s)zk+1 + 1 + z

N
∑

k=0

ck(s)zk

= z p(z) + 1 + zq(z),

where p and q are polynomials in z. Since ‖s − h‖∞ < 1, we obtain that

‖1 + z(q − h) + z p‖∞ = ‖zs− zh‖∞ = ‖s − h‖∞ < 1.

Since q − h ∈ A and p ∈ A, Lemma 2.5.14 shows that the function

z → z(q(z) − h(z)) + zp(z) = z(q − h + p)(z)

is invertible in A. So the function z → z is invertible in A, and hence A
contains all the functions z → zm, m ∈ Z. Because the linear combinations of
these functions are dense in C(T), we conclude that A = C(T). �	
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2.6 The structure space of A(X)

Let X be a compact subset of C. Recall that A(X) is the closed subalgebra of
C(X) consisting of all functions in C(X) which are holomorphic on the interior
X◦ of X . Our aim is to work out the structure space of A(X). Since A(X)
is a uniform algebra, the mapping x → ϕx, where ϕx is the point evaluation
ϕx(f) = f(x), f ∈ A(X), at x, is an embedding of the compact set X into
Δ(A(X)). As might be expected, this map is actually surjective, but this is
much harder to prove than the corresponding fact for R(X). To establish this
result, we need a sequence of preparatory lemmas.

In passing, we mention that in some special cases we already know that
Δ(A(X)) = X .

Remark 2.6.1. Clearly, R(X) ⊆ A(X), and A(X) = C(X) whenever X◦ =
∅. There exist sets X such that R(X) is strictly contained in A(X). An ex-
ample is provided by the so-called Swiss cheese (Example 2.5.11) which was
obtained by deleting countable many disjoint open discs from the closed unit
disc in an appropriate way. On the other hand, P (D) = A(D) �= C(D) (Ex-
ample 2.5.3).

In the sequel, λ(M) denotes the Lebesgue measure of a Borel subset M of
C.

Lemma 2.6.2. Let X be a Borel subset of C. Then, for any z ∈ C,
∫

X

1
|x − z|dx ≤ 2(πλ(X))1/2.

In particular, the functions x → 1/(x − z), z ∈ C, are integrable on compact
subsets of C.

Proof. Nothing has to be shown if λ(X) = 0 or λ(X) = ∞. Thus we can
assume that 0 < λ(X) < ∞. Let R = π−1/2λ(X)1/2, S = {x ∈ C : |x−z| ≤ R}
and, for any ε > 0, Sε = {x ∈ C : ε ≤ |x − z| ≤ R}. Then, introducing polar
coordinates, we get

∫

S

1
|x − z|dx = lim

ε→0

∫

Sε

1
|x − z|dx = lim

ε→0

∫ R

ε

∫ 2π

0

dϕdr

= lim
ε→0

2π(R − ε) = 2πR

= 2(πλ(X))1/2.

It therefore suffices to show that
∫

X

1
|x − z|dx ≤

∫

S

1
|x − z|dx.

To that end, note first that λ(X) = πR2 = λ(S) and X = (X ∩ S) ∪ (X \ S)
and hence
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λ(X \ S) = λ(X) − λ(X ∩ S) = λ(S) \ λ(S ∩ X) = λ(S \ X).

Now 1/|x− z| ≥ 1/R on S \X and 1/|x− z| ≤ 1/R on X \ S. It follows that
∫

X

1
|x − z|dx =

∫

X∩S

1
|x − z|dx +

∫

X\S

1
|x − z|dx

≤
∫

X∩S

1
|x − z|dx +

1
R

λ(X \ S)

=
∫

X∩S

1
|x − z|dx +

1
R

λ(S \ X)

≤
∫

X∩S

1
|x − z|dx +

∫

S\X

1
|x − z|dx

=
∫

S

1
|x − z|dx,

as required. �	

Lemma 2.6.3. Let K be a compact subset of C and g a bounded Borel mea-
surable function on K. Define a function f on C by

f(z) =
∫

K

g(x)
(x − z)

dx.

Then f vanishes at infinity and f is holomorphic on C \ K and continuous
everywhere.

Proof. First of all, the integral exists for all z ∈ C because the function
x → 1/(x− z) is integrable on compact sets (Lemma 2.6.2) and g is bounded.

If R > 0 and the distance from z to K is ≥ R, then

|f(z)| ≤ 1
R

∫

K

|g(x)|dx ≤ λ(K)
R

‖g‖∞.

This shows that f vanishes at infinity.
Next, for z, z0 ∈ C \ K with z �= z0 we have

f(z) − f(z0)
z − z0

=
1

z − z0

∫

K

(

g(x)
x − z

− g(x)
x − z0

)

dx =
∫

K

g(x)
(x − z)(x − z0)

dx.

Since z0 �∈ K, the function x → g(x)/(x − z)(x − z0) converges uniformly on
K, as z → z0, with limit g(x)/(x − z0)2. Therefore, as z → z0,

f(z)− f(z0)
z − z0

→
∫

K

g(x)
(x − z0)2

dx.

Thus f is holomorphic on C \ K.
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It remains to show that f is continuous at all points of K. We fix R > 0
so that K ⊆ U = {x ∈ C : |x| < R/2} and prove that f is continuous on U .
Since the function x → 1/x is integrable on any compact subset of C (Lemma
2.6.2) and Cc(C) is dense in L1(C), given ε > 0, there exists h ∈ Cc(C) such
that

∫

|x|≤R

∣

∣

∣

∣

h(x) − 1
x

∣

∣

∣

∣

dx ≤ ε.

For y ∈ U we then have
∣

∣

∣

∣

f(y) −
∫

K

g(u)h(u − y)du

∣

∣

∣

∣

≤
∫

K

|g(u)| ·
∣

∣

∣

∣

1
u − y

− h(u − y)
∣

∣

∣

∣

du

≤ ‖g‖∞
∫

K−y

∣

∣

∣

∣

1
u
− h(u)

∣

∣

∣

∣

du

≤ ‖g‖∞
∫

|u|≤R

∣

∣

∣

∣

1
u
− h(u)

∣

∣

∣

∣

du

≤ ε‖g‖∞.

As h is uniformly continuous, there exists δ > 0 such that, for all x, y ∈ C,
|h(x)−h(y)| ≤ ε whenever |x− y| ≤ δ. For x, y ∈ U with |x− y| ≤ δ it follows
that

|f(x) − f(y)| ≤ 2ε ‖g‖∞ +
∫

K

|g(u)| · |h(u − x) − h(u − y)|du

≤ ε‖g‖∞(2 + λ(K)).

This shows that f is (uniformly) continuous on U . �	

Lemma 2.6.4. Let X and K be compact subsets of C and let f ∈ A(X).
Extend f to all of C by setting f(x) = 0 for all x ∈ C \X, and define h on C

by

h(z) =
∫

K

f(x) − f(z)
x − z

dx.

Then h is continuous on C and holomorphic on X◦.

Proof. Since x → f(x) − f(z) is a bounded Borel measurable function on C,
h(z) is defined for all z ∈ C and h is a continuous function (Lemma 2.6.3).
Therefore, to show that h is holomorphic on X◦, by Morera’s theorem it is
enough to verify that

∫

γ
h(z)dz = 0 for every triangle path γ which together

with its interior is contained in X◦. For that, fix γ, let Γ denote the trace of
γ, and note first that the function

(x, z) → f(x) − f(z)
x − z

is a Borel function on K × Γ satisfying
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∫

γ

(∫

K

|f(x) − f(z)|
|x − z| dx

)

dz < ∞

(Lemma 2.6.2). Thus we can apply Fubini’s theorem to conclude that
∫

γ

h(z)dz =
∫

γ

(∫

K

f(x) − f(z)
x − z

dx

)

dz =
∫

K

(∫

γ

f(x) − f(z)
x − z

dz

)

dx.

Now the inner integral along γ is zero for all x ∈ C \ Γ . In fact, this is so
for every x ∈ C \ X◦ since then the function z → (x − z)−1(f(x) − f(z)) is
holomorphic on X◦ , whereas for each x ∈ X◦ \ Γ ,

∫

γ

f(x) − f(z)
x − z

dz = 2πi

(

f(x) − 1
2πi

∫

γ

f(z)
z − x

dz

)

= 0

by the Cauchy integral formula. Since K ∩ Γ has Lebesgue measure zero, it
follows that

∫

γ h(z)dz = 0, as required. �	

The preceding three lemmas together lead to the following approximation
result which is the main tool to prove that Δ(A(A)) = X .

Lemma 2.6.5. Let X be a compact subset of C and let z0 ∈ X and f ∈ A(X).
Then there exists a sequence (fn)n in A(X) such that

f(z)− f(z0) − (z − z0)fn(z) → 0

uniformly on X as n → ∞.

Proof. Replacing X by X −z0 and f by f −f(z0), we can assume that z0 = 0
and f(z0) = 0. Extend f to all of C by setting f(x) = 0 for x ∈ C \ X . For
n ∈ N, let Kn = {x ∈ C : |x| ≤ 1/n} and define fn on C by

fn(z) =
n2

π

∫

Kn

f(x) − f(z)
x − z

dx.

Then each fn is continuous on C and holomorphic on X◦ (Lemma 2.6.4).
Since λ(Kn) = π/n2, we have for all z ∈ C,

zfn(z) − f(z) =
n2

π

∫

Kn

(

z
f(x) − f(z)

x − z
− f(z)

)

dx.

We need to estimate the integral on the right. For r > 0, let

M(r) = sup{|f(z)| : z ∈ X, |z| ≤ r}.

With this notation, for all z ∈ C, it follows that

(1) |zfn(z) − f(z)| ≤ n2

π

(

|z|M
(

1
n

)

+
1
n
|f(z)|

)∫

Kn

1
|x − z| dx.
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Now, if |z| > 1/n, then |x − z| ≥ |z| − 1/n for all x ∈ Kn and hence

(2)
n2

π

∫

Kn

1
|x − z|dx ≤ 1

|z| − 1/n
.

On the other hand, if q ≥ 1 and |z| ≤ q/n, then by Lemma 2.6.2
∫

Kn

1
|x − z| dx =

∫

Kn−z

1
|x| dx ≤

∫

|x|≤2q/n

1
|x|dx ≤ 2π

2q

n
,

and hence, for all such z,

(3)
n2

π

∫

Kn

1
|x − z| dx ≤ 4qn.

Now let ε > 0 be given and choose q ∈ N, q > 1, such that (q − 1)ε > ‖f‖∞.
If |z| ≥ q/n > 1/n, then combining (1) and (2) yields

|zfn(z) − f(z)| ≤
|z|M( 1

n ) + 1
n |f(z)|

|z| − 1
n

≤
(

1 +
1
n

|z| − 1
n

)

M

(

1
n

)

+
1
n
‖f‖∞

1
|z| − 1

n

≤ q

q − 1
M

(

1
n

)

+ ‖f‖∞
1

q − 1

≤ q

q − 1
M

(

1
n

)

+ ε.

Similarly, if |z| < q/n then combining (1) and (3) gives

|zfn(z) − f(z)| ≤ 4qn

(

q

n
M

(

1
n

)

+
1
n

M
( q

n

)

)

= 4q

(

qM

(

1
n

)

+ M
( q

n

)

)

.

However, M(r) → 0 as r → 0 since f is continuous on X and f(0) = 0. It
follows that zfn(z) − f(z) → 0 uniformly on X . �	

Theorem 2.6.6. Let X be a compact subset of C. Then the mapping x →
ϕx, where ϕx(f) = f(x) for all f ∈ A(X), is a homeomorphism between
X and Δ(A(X)). With this identification of Δ(A(X)) and X, the Gelfand
homomorphism of A(X) is the identity.

Proof. We only have to show that given ϕ ∈ Δ(A(X)), there exists x ∈ X
such that ϕ(f) = f(x) for all f ∈ A(X).

Let x = ϕ(idX). Then x ∈ X since, for every λ ∈ C \ X , the function
z → 1/(λ − z) belongs to A(X) and therefore
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λ �∈ σA(X)(idX) = ̂idX(Δ(A(X))).

Now, for any f ∈ A(X), by Lemma 2.6.5 there exists a sequence (fn)n in
A(X) such that

f(z) − f(x) − (z − x)fn(z) → 0

uniformly on X . This implies that

ϕ(f) − f(x) = lim
n→∞

(ϕ(idX) − x)ϕ(fn) = 0,

as was to be shown.

2.7 The Gelfand representation of L1(G)

In commutative harmonic analysis the central object of study is the L1-algebra
of a locally compact Abelian group. In this section we present its Gelfand rep-
resentation. Thus, in the sequel, G always denotes a locally compact Abelian
group and L1(G) the convolution algebra of integrable functions on G.

To begin with, we introduce the dual group of G which turns out to be
canonically identifiable with Δ(L1(G)).

Definition 2.7.1. A character α of G is a continuous homomorphism from
G into the circle group T. Clearly, the pointwise product of two characters is
again a character and so is α−1 defined by α−1(x) = α(x) for all x ∈ G. Thus
̂G, the set of all characters of G, forms a group, the dual group of G.

We proceed to show that there is a bijection between ̂G and Δ(L1(G)).

Theorem 2.7.2. For α ∈ ̂G, let ϕα : L1(G) −→ C be defined by

ϕα(f) =
∫

G

f(x)α(x)dx, f ∈ L1(G).

Then ϕα ∈ Δ(L1(G)) and the mapping α → ϕα is a bijection from ̂G onto
Δ(L1(G)).

Proof. Of course, ϕα is a linear functional. For f, g ∈ Cc(G), Fubini’s theorem
and the invariance of Haar measure yield

ϕα(f ∗ g) =
∫

G

α(x)
∫

G

f(y)g(y−1x)dydx

=
∫

G

∫

G

f(y)α(x)g(y−1x)dxdy

=
∫

G

∫

G

f(y)α(yx)g(x)dxdy

=
∫

G

∫

G

α(x)g(x)α(y)f(y)dxdy

= ϕα(f)ϕα(g).
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Since |ϕα(f)| ≤ ‖f‖1 for all f ∈ L1(G), this formula even holds for all f, g ∈
L1(G). Moreover, ϕα is nonzero since for any nonnegative function f in Cc(G),
f �= 0, we have

ϕα(αf) =
∫

G

f(x)|α(x)|2dx > 0.

This shows that ϕα ∈ Δ(L1(G)). Moreover, the map α → ϕα is injective.
Indeed, if α, β ∈ ̂G are such that

0 = ϕα(f) − ϕβ(f) =
∫

G

f(x)
(

α(x) − β(x)
)

dx

for all f ∈ L1(G), then α = β because L1(G)∗ = L∞(G) and α and β are
continuous functions.

It remains to show that given ϕ ∈ Δ(L1(G)), there exists α ∈ ̂G such that
ϕ = ϕα. To that end, choose g ∈ L1(G) such that ϕ(g) = 1 and observe that
since ϕ ∈ L1(G)∗, there exists χ ∈ L∞(G) such that ϕ(f) =

∫

G
f(x)χ(x)dx

for all f ∈ L1(G). The function

(x, y) → χ(x)f(y)g(y−1x)

belongs to L1(G × G), and hence Fubini’s theorem implies that

ϕ(f) = ϕ(f ∗ g) =
∫

G

χ(x)
(
∫

G

f(y)g(y−1x)dy

)

dx

=
∫

G

f(y)
(∫

G

g(y−1x)χ(x)dx

)

dy

=
∫

G

f(y)ϕ(Lyg)dy

for all f ∈ L1(G). Now, define α : G → C by α(y) = ϕ(Lyg), y ∈ G. The
function α is continuous because the map y → Lyg from G into L1(G) is
continuous and

|α(x) − α(y)| = |ϕ(Lxg − Lyg)| ≤ ‖Lxg − Lyg‖1

for all x, y ∈ G. From g ∗ Lxyg = Lxg ∗ Lyg it follows that

α(xy) = ϕ(Lxyg) = ϕ(g)ϕ(Lxyg) = ϕ(g ∗ Lxyg)

= ϕ(Lxg ∗ Lyg) = ϕ(Lxg)ϕ(Lyg)
= α(x)α(y).

We claim that |α(x)| = 1 for all x ∈ G. For that, notice that

|α(y)| = |ϕ(Lyg)| ≤ ‖Lyg‖1 = ‖g‖1

for all y ∈ G, and hence, by the multiplicativity of α,
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|α(x)|n = |α(xn)| ≤ ‖g‖1

for all n ∈ Z. Since α(e) = ϕ(g) = 1, we conclude that |α(x)| = 1 for every
x ∈ G. This shows that α ∈ ̂G and ϕα = ϕ. �	

After identifying Δ(L1(G)) as a set with ̂G, our next purpose is to describe
the Gelfand topology on ̂G in terms of G itself rather than L1(G).

Lemma 2.7.3. Let f ∈ L1(G) and α ∈ ̂G.

(i) For all x ∈ G, (f ∗ α)(x) = α(x) ̂f (α) = L̂x−1f(α). In particular, L̂1(G)
is invariant under multiplication with functions of the form α → α(x),
x ∈ G.

(ii) If g ∈ L1(G) is defined by g(x) = α(x)f(x), then ĝ = Lα
̂f . In particular,

L̂1(G) ⊆ C0( ̂G) is translation invariant.

(iii) ̂f∗ = ̂f and L̂1(G) ⊆ C0( ̂G) is norm-dense in C0( ̂G).

Proof. (i) f ∗ α is a continuous function and

(f ∗ α)(x) =
∫

G

f(y)α(y−1x)dy = α(x) ̂f (α)

for all x ∈ G. On the other hand,

(f ∗ α)(x) =
∫

G

f(xy)α(y)dy = L̂x−1f(α).

(ii) For all β ∈ ̂G, we have

ĝ(β) =
∫

G

f(x)β(x)α(x)dx = ̂f(α−1β) = Lα
̂f(β),

so that Lα
̂f = ĝ ∈ L̂1(G).

(iii) For each α ∈ ̂G, we have

̂f∗(α) =
∫

G

f(x−1)α(x)dx =
∫

G

f(x)α(x)dx = ̂f(α),

so that ̂f∗ = ̂f . Thus L̂1(G) is a self-adjoint subalgebra of C0( ̂G) which
strongly separates the points of ̂G and therefore is dense in (C0( ̂G), ‖ · ‖∞) by
the Stone–Weierstrass theorem. �	

Lemma 2.7.4. Let f ∈ L1(G) and ε > 0 and let σ denote the Gelfand topology
on ̂G. Then there exists a neighbourhood W of e in G with the following
property. If y, x ∈ G and β, α ∈ ̂G are such that y ∈ Wx, ϕα(f) = 1, and
β ∈ U(α, f, Lxf, ε/3), then

|β(y) − α(x)| < ε.

In particular, the function (x, α) → α(x) is continuous on G × ( ̂G, σ).
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Proof. For arbitrary y, x ∈ G and β, α ∈ ̂G such that ̂f(α) = 1 we obtain
from Lemma 2.7.3,

|β(y) − α(x)| ≤ |β(y) − β(y) ̂f(β)| + |β(y) ̂f(β) − β(x) ̂f(β)|
+ |β(x) ̂f(β) − α(x) ̂f(α)|

= |1 − ̂f(β)| + |̂Lyf(β) − ̂Lxf(β)| + |̂Lxf(β) − ̂Lxf(α)|
≤ | ̂f(β) − ̂f(α)| + ‖Lyf − Lxf‖1 + |̂Lxf(β) − ̂Lxf(α)|.

Now let W be a neighbourhood of e such that ‖Lsf − Ltf‖1 < ε/3 whenever
t−1s ∈ W . For all y ∈ Wx and β ∈ U(α, f, Lxf, ε/3) it then follows that
|β(y) − α(x)| < ε.

For the last statement of the lemma we only have to recall that given
α ∈ ̂G, there exists f ∈ L1(G) such that ̂f(α) = 1. �	

We now consider the compact open topology τ on ̂G. A τ -neighbourhood
basis of α0 ∈ ̂G is formed by the collection of sets

V (α0, K, ε) = {α ∈ ̂G : |α(x) − α0(x)| < ε for all x ∈ K},

where ε > 0 and K is any compact subset of G. Then ( ̂G, τ) is a topological
group since V (α0, K, ε)−1 = V (α−1

0 , K, ε) and

V (α0, K, ε)V (β0, K, ε) ⊆ V (α0β0, K, 2ε).

In fact, the latter inclusion follows from

|αβ(x) − α0β0(x)| ≤ |α(x)(β(x)) − β0(x))| + |β0(x)(α(x) − α0(x))|
≤ |β(x) − β0(x)| + |α(x) − α0(x)|.

Theorem 2.7.5. On ̂G the Gelfand topology and the compact open topology
coincide.

Proof. Let 1G denote the trivial character of G. Note that, for α ∈ ̂G, δ > 0,
and f1, . . . , fn ∈ L1(G), we have

α U(1G, f1, . . . , fn, δ) = U(α, f1α, . . . , fnα, δ).

In fact, for β ∈ ̂G and f ∈ L1(G),

ϕβ(fα) − ϕα(fα) =
∫

G

f(x)α(x)(β(x) − α(x))dx

=
∫

G

f(x)(α−1β(x) − 1)dx

= ϕα−1β(f) − ϕ1G(f).

Hence we only have to verify that every τ -neighbourhood of 1G contains a
σ-neighbourhood of 1G and vice versa.
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Let V (1G, K, δ) be given and choose f ∈ L1(G) such that
∫

G
f(x)dx = 1.

By Lemma 2.7.4, there exists a neighbourhood W of e in G such that if
x, y ∈ G satisfy y ∈ Wx and if α ∈ U(1G, f, Lxf, δ/3), then |α(y) − 1| < δ.
Because K is compact, we find x1, . . . , xr ∈ K so that K ⊆

⋃r
j=1 Wxj . It

follows that
U(1G, f, Lx1f, . . . , Lxrf, δ/3) ⊆ V (1G, K, δ).

Conversely, let U(1G, f1, . . . , fn, δ) be given. We can assume that fj �= 0
for all j = 1, . . . , n. For every j, choose gj ∈ Cc(G) with ‖fj − gj‖1 < δ/4. Set

K =
⋃

{supp gj : 1 ≤ j ≤ n}

and
ε =

δ

2
min{‖fj‖−1 : 1 ≤ j ≤ n}.

We claim that
V (1G, K, ε) ⊆ U(1G, f1, . . . , fn, δ).

Indeed, if α ∈ V (1G, K, ε) then, for each j = 1, . . . , n,

|ϕα(fj) − ϕ1G(fj)| ≤
∫

K

|fj(x)| · |α(x) − 1|dx

+
∫

G\K

|fj(x)| · |α(x) − 1|dx

< ε‖fj‖1 + 2
∫

G\K

|fj(x)|dx

= ε‖fj‖1 + 2
∫

G\K

|fj(x) − gj(x)|dx

≤ ε‖fj‖1 + 2‖fj − gj‖1

≤ δ.

This completes the proof. �	

Since ( ̂G, σ) is locally compact and ( ̂G, τ) is a topological group, Theo-
rem 2.7.5 in particular shows that ̂G is a locally compact group. Identifying
Δ(L1(G)) as a topological space with ̂G, the Gelfand representation of L1(G)
is the mapping f → ̂f , where ̂f ∈ C0( ̂G) is defined by

̂f(α) =
∫

G

f(x)α(x)dx, α ∈ ̂G.

We now present a number of simple examples of dual groups, such as ̂R, ̂Z,
and ̂T.
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Example 2.7.6. (1) The dual group of the real line R is topologically iso-
morphic to R. In fact, for each y ∈ R, define a character αy of R by
αy(x) = exp(2πixy), x ∈ R. Then the map y → αy from R into ̂R is in-
jective and every character of R arises in this way (see Exercise 2.12.29). In
addition, y → αy is a homeomorphism. Now,

ϕαy (f) =
∫

R

f(x) exp(−2πixy)dx = ̂f(y).

Thus, after identifying ̂R with R, the Gelfand homomorphism of L1(R) agrees
with the Fourier transformation.

(2) In Example 2.2.10 we have already determined the Gelfand represen-
tation of l1(Z). Implicit in the arguments given there is the fact that the map
z → αz, where αz(n) = zn for n ∈ Z, is a homeomorphism between T and the
dual group ̂Z.

(3) It follows from ̂Z = T and the duality theorem for locally compact
Abelian groups (a proof of which we present in Theorem A.5.2) that ̂T is
isomorphic to Z. However, this can be seen directly as follows. First, for every
n ∈ Z, the function z → zn is a character of T. To show that every character
α of T is of this form, consider the functions fk on T defined by fk(z) =
zk (k ∈ Z). By the Weierstrass approximation theorem the linear span of
these functions fk is dense in C(T) and hence in L1(T). Thus ̂fk(α) �= 0 for
at least one k. On the other hand, for arbitrary k, l ∈ Z,

fk ∗ fl(z) =
∫

T

tk(t−1z)ldt = zk = fk(z)

if k = l and = 0 otherwise. Thus ̂fk(α)̂fl(α) = ̂fk(α) if l = k and ̂fk(α)̂fl(α) =
0 otherwise. This implies that ̂fk(α) = 1 for exactly one k and ̂fl(α) = 0 for
all l ∈ Z, l �= k. Now, because

̂fl(αk) =
∫

T

zl−kdz = δkl

for all l ∈ Z, we obtain that α = αk, as was to be shown. Finally, the relation
̂fl(αk) = δkl (k, l ∈ Z) also shows that the Gelfand topology on ̂T is discrete.
Thus ̂T is topologically isomorphic to Z, and identifying ̂T with Z, we have

̂f(n) =
∫

T

f(z)z−ndz

for f ∈ L1(T) and n ∈ Z.
(4) Let G1 and G2 be two locally compact Abelian groups and G = G1×G2

their direct product. It is not difficult to show that the map

(α1, α2) → α, α(x1, x2) = α1(x1)α2(x2) (αj ∈ ̂Gj , xj ∈ Gj , j = 1, 2)
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furnishes a topological isomorphism from ̂G1 × ̂G2 to ̂G. Therefore, combin-
ing the cases (1), (2), and (3), the Gelfand representation of L1(G) can be
explicitly given for groups of the form R

m × Z
n × T

r, m, n, r ∈ N0.

Our next goal is to show that L1(G) is semisimple. To achieve this opens
the opportunity to introduce the regular representation of L1(G) and the
group C∗-algebra of G. Both are needed anyway in Chapter 4 in our approach
to establish regularity of L1(G).

To start with, recall that for f ∈ L1(G) and g ∈ Cc(G), the convolution
product f ∗ g is given by

(f ∗ g)(x) =
∫

G

f(y)g(y−1x)dy

for every x ∈ G, and f ∗ g is a continuous function. For g, h ∈ Cc(G) and
f ∈ L1(G), using Fubini’s theorem and Hölder’s inequality, we get

∣

∣

∣

∣

∫

G

(f ∗ g)(x)h(x)dx

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

G

∫

G

f(y)g(y−1x)h(x)dydx

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

G

∫

G

f(y)g(x)h(yx)dxdy

∣

∣

∣

∣

≤
∫

G

|f(y)|
∫

G

|g(x)Ly−1h(x)|dxdy

≤
∫

G

|f(y)| · ‖Ly−1h‖2‖g‖2dy

≤ ‖f‖1‖g‖2‖h‖2.

Since Cc(G) is dense in L2(G) it follows that the map

h →
∫

G

h(x)(f ∗ g)(x)dx

extends to a bounded linear functional on L2(G) the norm of which is at
most ‖f‖1‖g‖2. Since L2(G)∗ = L2(G), we conclude that f ∗ g ∈ L2(G) and
‖f ∗ g‖2 ≤ ‖f‖1‖g‖2 (see also Proposition A.4.7). Thus the linear mapping
g → f ∗ g from Cc(G) into L2(G) extends uniquely to a bounded linear
transformation λf : L2(G) → L2(G) and ‖λf‖ ≤ ‖f‖1.

Theorem 2.7.7. The mapping λ : f → λf from L1(G) into B(L2(G)) is an
injective ∗-homomorphism.

Proof. It is clear that λ is linear. For f1, f2 ∈ L1(G) and g ∈ Cc(G),

λf1∗f2(g) = f1 ∗ (f2 ∗ g) = λf1 (λf2(g)).

Thus λ is a homomorphism. Moreover, for f ∈ L1(G) and g, h ∈ Cc(G),
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〈λ∗
f (g), h〉 = 〈g, λf (h)〉 =

∫

G

g(x)
∫

G

f(y)h(y−1x)dydx

=
∫

G

∫

G

f(y−1)g(x)h(yx)dxdy

=
∫

G

∫

G

f∗(y)g(y−1x)h(x)dxdy =
∫

G

(f∗ ∗ g)(x)h(x)dx

= 〈λf∗(g), h〉.

This proves that λ is a ∗-homomorphism.
Finally, λ is injective. Indeed, if f ∈ L1(G) is such that 0 = λf (g) = f ∗ g

for all g ∈ Cc(G), then f = 0 since Cc(G) contains an approximate identity
for L1(G). �	
Definition 2.7.8. The ∗-homomorphism λ : f → λf from L1(G) into
B(L2(G)) is called the regular representation of L1(G) on the Hilbert space
L2(G). Let C∗(G) denote the closure of λ(L1(G)) in B(L2(G)). Then, by Theo-
rem 2.7.7, C∗(G) is a commutative C∗-algebra, the so-called group C∗-algebra
of G.

Every commutative C∗-algebra is semisimple and λ is injective (Theorem
2.7.7). Thus we conclude the following

Corollary 2.7.9. L1(G) is semisimple.

We now turn to the interesting and likewise important question of when
the Gelfand homomorphism L1(G) → C0( ̂G) is surjective. Clearly, this is
the case if G is finite because then L̂1(G) is a finite-dimensional dense linear
subspace of C0( ̂G). To establish the converse, we first show that surjectivity
forces G to be discrete.

Lemma 2.7.10. Let G be a locally compact Abelian group, and suppose that
the Gelfand homomorphism Γ : f → ̂f from L1(G) into C0( ̂G) is surjective.
Then G has to be discrete.

Proof. Let Γ ∗ : M( ̂G) = (C0( ̂G))∗ → L1(G)∗ = L∞(G) denote the dual
mapping of Γ . Since Γ is surjective, it is an isomorphism of Banach spaces and
hence Γ ∗ is also an isomorphism. For μ ∈ M( ̂G), define its inverse Fourier–
Stieltjes transform μ̌ on G by μ̌(x) =

∫

G α(x)dμ(α). Then, using Fubini’s
theorem, for any μ ∈ M( ̂G) and f ∈ L1(G),

〈Γ ∗(μ), f〉 = 〈μ, Γ (f)〉 =
∫

̂G

̂f(α)dμ(α)

=
∫

̂G

(∫

G

f(x)α(x)dx

)

dμ(α)

=
∫

G

f(x)
(∫

̂G

α(x)dμ(α)
)

dx

=
∫

G

f(x)μ̌(x)dx.
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It follows that Γ ∗(μ) = μ̌ locally almost everywhere for every μ ∈ M( ̂G).
Now, using the facts that the function (x, α) → α(x) is continuous on G × ̂G
(Lemma 2.7.4) and that

|μ̌(x) − μ̌(y)| ≤
∫

̂G

|α(x) − α(y)|d|μ|(α),

it is easily verified that μ̌ is continuous. Since Γ ∗ is onto, this means that every
function in L∞(G) is equal locally almost everywhere to a continuous function.
However, this implies that G is discrete. Indeed, let U be an open, relatively
compact subset of G which is not dense in G and let g be a continuous function
on G which equals the characteristic function of U locally almost everywhere.
Then g(x) = 1 for x ∈ U , whereas g(x) = 0 for x ∈ G \ U . It follows that U
is closed in G and since this holds for any such set U , we conclude that G is
discrete. �	

Lemma 2.7.11. Let G be a compact Abelian group and let X be an infi-
nite subgroup of ̂G. Then there exists f ∈ C(G) such that supp ̂f ⊆ X and
∑

χ∈X

| ̂f(χ)| = ∞.

Proof. The key step in achieving the existence of such a function f is to find
a sequence (gn)n of continuous functions on G with the following properties.

(1) ‖gn‖∞ ≤ 2(n+1)/2.
(2) The range of ĝn is contained in {−1, 0, 1}.
(3) |ĝn| is the characteristic function of some subset Xn of X having precisely

2n elements.

Suppose first that such a sequence (gn)n exists. Then, because X is infinite and
all Xn are finite, we can inductively define a sequence of characters χ1, χ2, . . .
in X such that, with χ0 = 1G, the sets χ−1

n Xn, n ∈ N0, are pairwise disjoint.
Then, let fn = 2−n/2χngn, n ∈ N0, so that the range of ̂fn is contained in
{−2−2/n, 0, 2−n/2} and 2n/2| ̂fn| is the characteristic function of the set An =
χnXn which contains exactly 2n elements. Since ‖fn‖∞ ≤ 2−n/2‖gn‖∞ ≤
21/2, we can define a continuous function f on G by setting

f(x) =
∞
∑

n=0

2−n/2fn(x).

Now, if χ �∈
⋃∞

n=0 An, then

̂f(χ) =
∞
∑

n=0

2−n/2
̂fn(χ) = 0,

whereas, if χ ∈
⋃∞

n=0 An, then χ ∈ An for exactly one n and hence

| ̂f(χ)| = 2−n/2| ̂fn(χ)| = 2−n.
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It follows that supp ̂f ⊆ X and

∑

χ∈X

| ̂f(χ)| =
∞
∑

n=0

⎛

⎝

∑

χ∈An

| ̂f(χ)|

⎞

⎠ =
∞
∑

n=0

2−n|An| = ∞,

as required.
To start the construction of the sequence (gn)n, first let χ1, χ2, . . . be

any sequence of characters of G which are specified later. Define sequences
g0, g1, . . . and h0, h1, . . . inductively in C(G) by g0 = h0 = 1G and

gn+1 = gn + χn+1hn and hn+1 = gn − χn+1hn.

It is straightforward to verify that

|gn+1(x)|2 + |hn+1(x)|2 = 2(|gn(x)|2 + |hn(x)|2)

for all x ∈ G and n ∈ N0. Hence the supremum norm of |gn+1|2 + |hn+1|2
bounded by ≤ 2n+2 whenever the supremum norm of |gn|2 + |hn|2 is bounded
by ≤ 2n+1. Suppose that the ranges of both ĝn and ̂hn are contained in
{−1, 0, 1}. Then the same is true of ĝn+1 and ̂hn+1 provided that χn+1 has
the property that

supp ĝn ∩ χn+1(supp̂hn) = ∅.

Moreover, if χn+1 has this property and |ĝn| and |̂hn| are the characteristic
functions of sets En and Fn, respectively, such that En and Fn each contain
precisely 2n elements, then |ĝn+1| is the characteristic function of En∪χn+1Fn,

which has 2n+1 elements, and similarly for |̂hn+1|.
It is now obvious fairly how the sequence χ1, χ2, . . . has to be chosen.

Since
∫

G χ(x)dx = 0 for every χ �= 1G (Exercise 2.12.30), we have ĝ0 =
̂h0 = δ1G . Hence χ1 may be any nontrivial character from X . Suppose that
χ1, . . . , χn ∈ X have been chosen such that g1, . . . , gn and h1, . . . , hn have
the above properties. Then we simply have to select χn+1 ∈ X so that En ∩
χ−1

n+1Fn = ∅, and this is possible since En and Fn are finite and X is infinite.
This completes the construction of a sequence (gn)n with properties (1), (2),
and (3) above. �	

The functions fn constructed in the proof of Lemma 2.7.11 are analogues
of the Rudin-Shapiro trigonometric polynomials on the circle group (see [72,
p. 33, Exercise 6]).

Theorem 2.7.12. Let G be a locally compact Abelian group. Then the Gelfand
homomorphism Γ : L1(G) → C0( ̂G) is surjective if and only if G is finite.

Proof. Suppose that Γ is surjective. Then G is discrete by Lemma 2.7.10.
Towards a contradiction, assume that G is infinite. For each x ∈ G, define
a character χx of ̂G by χx(α) = α(x). Then x → χx is a bijection between
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G and the subgroup X = {χx : x ∈ G} of the dual group ̂

̂G of ̂G. Since ̂G

is compact and X is infinite, by Lemma 2.7.11 there exists f ∈ C( ̂G) such
that supp ̂f ⊆ X and

∑

χ∈X | ̂f(χ)| = ∞. Since Γ is surjective, there exists

g ∈ L1(G) with ĝ = f . Now recall that
∫

̂G
χ(α)dα = 0 for every χ ∈ ̂

̂G\ {1
̂G}.

It follows that

̂f(χx) =
∫

̂G

χx(α)

⎛

⎝

∑

y∈G

g(y)α(y)

⎞

⎠ dα

=
∑

y∈G

g(y)
(∫

̂G

χx(α) χy(α)dα

)

=
∑

y∈G

g(y)
(∫

̂G

χxy(α)dα

)

= g(x−1)

for every x ∈ G. Thus
∑

x∈G

|g(x−1)| =
∑

x∈G

| ̂f(χx)| =
∑

χ∈X

| ̂f(χ)| = ∞.

This contradiction shows that G must be finite. �	

To prove Theorem 2.7.12, it is possible to avoid the use of Lemma 2.7.11
and instead only apply Lemma 2.7.10 and the Pontryagin duality theorem.
However, we prefer not to utilise the duality theorem although in Appendix
A.5 we have presented a proof of it, based on the Plancherel theorem. In
addition, we feel the construction performed in the proof of Lemma 2.7.11 is
of independent interest.

2.8 Beurling algebras L1(G, ω)

Let G be a locally compact Abelian group and ω a weight function on G.
In Section 1.3 we have introduced the associated Beurling algebra L1(G, ω).
Extending some of the results of the preceding section, we now describe the
structure space Δ(L1(G, ω)) of L1(G, ω) in terms of so-called ω-bounded gen-
eralised characters of G. These generalized characters can be identified ex-
plicitly when G is either the additive group of real numbers or the group of
integers. We also show that L1(G, ω) is always semisimple.

Definition 2.8.1. An ω-bounded generalised character on G is a continuous
homomorphism α from G into the multiplicative group C× of nonzero complex
numbers satisfying |α(x)| ≤ ω(x) for all x ∈ G. Let ̂G(ω) denote the set of
all such ω-bounded generalised characters on G equipped with the topology
of uniform convergence on compact subsets of G.
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It is clear from the very definition of ̂G(ω) that ̂G is contained in ̂G(ω) if
and only if ω(x) ≥ 1 for all x ∈ G. Our first result is the analogue of Theorem
2.7.2.

Theorem 2.8.2. Let G be a locally compact Abelian group and ω a weight on
G. For α ∈ ̂G(ω), define ϕα : L1(G, ω) → C by

ϕα(f) =
∫

G

f(x)α(x)dx, f ∈ L1(G, ω).

Then ϕα ∈ Δ(L1(G, ω)), and the map α → ϕα is a bijection between ̂G(ω)
and Δ(L1(G, ω)).

Proof. It is straightforward to show that ϕα is a nonzero homomorphism and
that, since Cc(G) ⊆ L1(G, ω), the map α → ϕα is injective (compare the
proof of Theorem 2.7.2).

To show that every ϕ ∈ Δ(L1(G, ω)) equals ϕα for some α ∈ ̂G(ω), we
proceed in a similar manner as in the proof of Theorem 2.7.2. Choose g ∈
Cc(G) such that ϕ(g) = 1 and define α : G → C by α(y) = ϕ(Lyg), y ∈ G.
Then α is continuous because the map x → Lxg from G into L1(G, ω) is
continuous (Lemma 1.3.6) and

|α(x) − α(y)| = |ϕ(Lxg − Lyg)| ≤ ‖Lxg − Lyg‖1,ω.

For all y ∈ G, using Lemma 1.3.6,

|α(y)| = |ϕ(Lyg)| ≤ ‖Lyg‖1,ω ≤ ω(y)‖g‖1,ω.

Moreover, since ϕ is a homomorphism, we have α(xy) = α(x)α(y) for all
x, y ∈ G (compare the proof of Theorem 2.7.2) and therefore

|α(y)| = |α(yn)|1/n ≤ ω(yn)1/n‖g‖1/n
1,ω ≤ ω(y)‖g‖1/n

1,ω

for all y ∈ G and n ∈ N. It follows that |α(y)| ≤ ω(y) for all y ∈ G. This
shows that α ∈ ̂G(ω).

Finally, for any f ∈ Cc(G),

ϕ(f) = ϕ(g ∗ f) = ϕ

(

x →
∫

G

f(y)Lyg(x)dy

)

=
∫

G

f(y)ϕ(Lyg)dy =
∫

G

f(y)α(y)dy

= ϕα(f).

Since ϕ and ϕα are continuous, we conclude that ϕ = ϕα. �	

Remark 2.8.3. Suppose that the weight ω on G satisfies limn→∞ ω(xn)1/n =
1 for all x ∈ G. Then ̂G = ̂G(ω). In fact, the condition implies that ω(x) ≥ 1
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for all x ∈ G and hence ̂G ⊆ ̂G(ω). Conversely, let α ∈ ̂G(ω). We have seen
in the proof of Theorem 2.8.2 that

|α(x)| ≤ lim
n→∞

ω(xn)1/n

and hence |α(x)| ≤ 1 for all x ∈ G. Since α is multiplicative, this implies that
|α(x)| = 1 for all x ∈ G. Therefore, ̂G(ω) ⊆ ̂G.

Lemma 2.8.4. Let f ∈ L1(G, ω), x ∈ G, and ε > 0. Then there exist a
neighbourhood W of e in G and δ > 0 with the following property. If y ∈ G
and β, α ∈ ̂G(ω) are such that y ∈ Wx, ϕα(f) = 1 and β ∈ U(α, f, Lxf, δ),
then

|β(y) − α(x)| < ε.

In particular, the function (x, α) → α(x) on G × ̂G(ω) is continuous.

Proof. Note first that ̂Lzf(γ) = γ(z) ̂f(γ) for all z ∈ G and γ ∈ ̂G(ω) since γ

is multiplicative. For arbitrary y, x ∈ G and β, α ∈ ̂G(ω) such that ϕα(f) = 1,
as in the proof of Lemma 2.7.4 we get

|β(y) − α(x)| ≤ |β(y)| · |1 − ̂f(β)| + ‖Lyf − Lxf‖1,ω + |̂Lxf(β) − ̂Lxf(α)|
≤ ω(y)| ̂f(β) − ̂f(α)| + ‖Lyf − Lxf‖1,ω + |̂Lxf(β) − ̂Lxf(α)|.

Now, fix a compact neighbourhood K of x and let

C = max{1, sup{ω(t) : t ∈ K}} < ∞

(Lemma 1.3.3). Let δ = ε(3C)−1 and let W be a neighbourhood of e such that
Wx ⊆ K and

‖Lyf − Lxf‖1,ω < δ

for all y ∈ Wx (Lemma 1.3.6). Then, if y ∈ Wx and β ∈ U(α, f, Lxf, δ), the
above estimate shows that |β(y) − α(x)| < ε. �	

Because weight functions are only locally bounded, in contrast to the case
of L1(G) we cannot expect that W and δ in the preceding lemma can be
chosen independently of x.

Theorem 2.8.5. On ̂G(ω) = Δ(L1(G, ω)) the Gelfand topology coincides
with the topology of uniform convergence on compact subsets of G.

Proof. Let g be a bounded measurable function on G with compact support,
K say. Then g ∈ L1(G, ω) (Lemma 1.3.5) and for any α, β ∈ ̂G(ω),

|ϕα(g) − ϕβ(g)| ≤
∫

K

|g(x)| · |α(x) − β(x)|dx

≤ ‖g‖∞|K| sup
x∈K

|α(x) − β(x)|,
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where |K| denotes Haar measure of K. Now, given f ∈ L1(G, ω) and ε > 0,
there exists such a function g satisfying ‖g − f‖1,ω ≤ ε. It follows that

|ϕα(f) − ϕβ(f)| ≤ 2‖f − g‖1,ω + |ϕα(g) − ϕβ(g)|
≤ 2ε + ‖g‖∞|K| sup

x∈K
|α(x) − β(x)|.

This shows that the Gelfand topology on ̂G(ω) is coarser than the topology
of uniform convergence on compact subsets of G.

Conversely, let α ∈ ̂G(ω), a compact subset K of G, and ε > 0 be given.
Let

V (α, K, ε) = {β ∈ ̂G(ω) : |β(x) − α(x)| < ε for all x ∈ K}

and choose f ∈ L1(G, ω) such that ̂f(α) = 1. By Lemma 2.8.4, for every
x ∈ K there exist a neighbourhood Wx of e in G and δx > 0 with the following
property: If y ∈ Wxx and β ∈ U(α, f, Lxf, δx), then |β(y) − α(x)| < ε. Since
K is compact, there exist x1, . . . , xn ∈ K such that K ⊆

⋃n
j=1 Wxj xj . Let

δ = min{δx1 , . . . , δxn}. Then

U(α, f, Lx1f, . . . , Lxnf, δ) ⊆ V (α, K, 2ε).

Indeed, if β is in the set on the left side and x ∈ K, then x ∈ Wxj xj for some
j ∈ {1, . . . , n} and β ∈ U(α, f, Lxj f, δxj ) and therefore

|β(x) − α(x)| ≤ |β(x) − α(xj)| + |α(xj) − α(x)| < 2ε.

This shows that the Gelfand topology on ̂G(ω) is finer than the topology of
uniform convergence on compact subsets of G. �	

Identifying Δ(L1(G, ω)) as a topological space with ̂G(ω), the Gelfand
representation of L1(G, ω) is given by the map f → ̂f(α), where ̂f(α) =
∫

G
f(x)α(x)dx for α ∈ ̂G(ω).
We now determine Δ(L1(G, ω)) for G equal to R or to Z.

Lemma 2.8.6. Let ω be a weight function on R and define nonnegative real
numbers R+ and R− by

R+ = inf{ω(t)1/t : t > 0} and R− = sup{ω(−t)−1/t : t > 0}.

Then 0 < R− ≤ R+, and every z ∈ C satisfying −ln R+ ≤ Re z ≤ −ln R−
defines an element ϕz of Δ(L1(R, ω)) by

ϕz(f) =
∫

R

f(t)e−ztdt, f ∈ L1(R, ω).

Proof. We show first that

R+ = lim
t→∞

ω(t)1/t.
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To see this, let ε > 0 and choose t0 > 0 such that ω(t0)1/t0 ≤ R+ + ε. Write
any t > 0 as t = mt0 + s, where m ∈ N0 and 0 ≤ s < t0. Then

ω(t)1/t ≤ ω(mt0)1/tω(s)1/t ≤ ω(t0)1/t0(ω(t0)−s/t0)1/tω(s)1/t.

≤ (R+ + ε)(ω(t0)−s/t0 )1/tω(s)1/t.

This inequality shows that ω(t)1/t converges, as t → ∞, with limit R+. Simi-
larly, it is shown that

R− = lim
t→∞

ω(−t)−1/t.

Since ω(0) ≤ ω(−t)ω(t) for all t ∈ R, we obtain

0 < R− = lim
t→∞

ω(0)1/tω(−t)−1/t ≤ lim
t→∞

ω(t)1/t = R+.

Now, let z ∈ C be such that −lnR+ ≤ Re z ≤ −lnR−. We claim that
|e−zt| ≤ ω(t) for all t ∈ R. For this, notice that by definition of R+,

exp(−t Re z) ≤ exp(t ln R+) ≤ exp(t ln(ω(t)1/t)) = ω(t)

for all t > 0. Similarly, for all t < 0,

exp(−t Re z) ≤ exp(t ln R−) ≤ exp(t ln(ω(t)1/t)) = ω(t).

Thus |e−zt| = exp(−t Re z) ≤ ω(t) for all t ∈ R and hence the integral
∫

R

f(t)e−ztdt

converges absolutely for each f ∈ L1(R, ω). Therefore, we can define a
bounded linear functional ϕz on L1(R, ω) by

ϕz(f) =
∫

R

f(t)e−tzdt.

It is then easily verified that ϕz(f ∗ g) = ϕz(f)ϕz(g) for all f, g ∈ L1(R, ω).
Hence ϕz ∈ Δ(L1(R, ω)). �	

Proposition 2.8.7. Let ω be any weight on R and let R+ and R− be as in
Lemma 2.8.6. Let Sω be the vertical strip in the complex plane defined by

Sω = {z ∈ C : −lnR+ ≤ Re z ≤ −lnR−}.

Then the map z → ϕz, where ϕz is as in Lemma 2.8.6, is a homeomorphism
from Sω onto Δ(L1(R, ω)).

Proof. It is clear that the map z → ϕz from Sω into Δ(L1(R, ω)) is injective.
We show that every ϕ ∈ Δ(L1(R, ω)) arises in this manner. To see this, recall
first from Theorem 2.8.2 that there exists a continuous function γ : R → C

satisfying γ(t + s) = γ(t)γ(s) and 0 < |γ(t)| ≤ ω(t) for all t, s ∈ R and
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ϕ(f) =
∫

R

f(t)γ(t)dt

for all f ∈ L1(R, ω). The functional equation γ(t + s) = γ(t)γ(s) and the
continuity of γ imply that there exists w ∈ C such that

γ(t) = eiwt

for all t ∈ R (Exercise 2.12.29). If w = a + ib with a, b ∈ R, then |γ(t)| ≤ ω(t)
implies that e−bt ≤ ω(t) for all t ∈ R. Since

e−b = (e−bn)1/n ≤ ω(n)1/n → R+

as n → ∞, we get −b ≤ ln R+. Similarly

e−b = (e(−b)(−n))−1/n = |γ(−n)|−1/n ≥ ω(−n)−1/n → R−

as n → ∞, whence −b ≥ ln R−. Thus − lnR+ ≤ b ≤ − lnR− and hence
b + ia ∈ Sω and ϕ = ϕb+ia.

By Theorem 2.8.5, the map α → ϕα is a homeomorphism between ̂R(ω)
and Δ(L1(R, ω)). On the other hand, the map z → αz, where αz(t) = ezt

for t ∈ R, from Sω to ̂R(ω) is bijective and obviously a homeomorphism.
Combining these two facts shows that z → ϕz is a homeomorphism from Sω

onto Δ(L1(R, ω)). �	

The formula of Lemma 2.8.6 is reminiscent of the Laplace transform. In
fact, ϕz(f) is nothing but the Laplace transform of f at z ∈ Sω. We now turn
to the group of integers.

Proposition 2.8.8. Let ω be a weight function on Z and define positive real
numbers R+ and R− by

R+ = inf{w(n)1/n : n ∈ N} and R− = sup{w(m)1/m : m ∈ −N}.

Then there is a homeomorphism from the annulus

K(R−, R+) = {z ∈ C : R− ≤ |z| ≤ R+}.

onto Δ(l1(Z, ω)) given by z → ϕz, where

ϕz(f) =
∞
∑

n=−∞
f(n)zn, f ∈ l1(Z, ω).

Proof. The following formulae can be verified in very much the same manner
as the spectral radius formula (Lemma 1.2.5):

R+ = lim
n→∞

w(n)1/n and R− = lim
n→∞

w(−n)−1/n.
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For the reader’s convenience we nevertheless include the proof of the second.
Let ε > 0 be given and choose k ∈ N such that ω(−k)−1/k > R− − ε. Write
n ∈ N in the form n = p(n)k + q(n), where p(n) ∈ N0 and 0 ≤ q(n) < k. Then

p(n)
n

=
1
k

(

1 − q(n)
n

)

→ 1
k

as n → ∞. Since ω(r + s) ≤ ω(r)ω(s) for all r, s ∈ Z, we have ω(−n) ≤
ω(−k)p(n)ω(−q(n)) and hence, for all n ∈ N,

ω(−n)−1/n ≥ ω(−k)−p(n)/nω(−q(n))−1/n.

The right hand side converges to ω(−k)−1/k as n → ∞. Thus ω(−n)−1/n >
R−− ε eventually and therefore R− = limn→∞ ω(−n)−1/n. Now, the inequal-
ity

ω(n)1/nω(−n)1/n ≥ ω(0)1/n ≥ 1

implies that ω(n)1/n ≥ ω(−n)−1/n for all n ∈ N. It follows that

R− = lim
n→∞

ω(−n)−1/n ≤ lim
n→∞

ω(n)1/n = R+.

For z ∈ K(R−, R+) and f ∈ l1(Z, ω), by definition of R+ and R−, we have

∑

n∈Z

|f(n)| · |z|n = |f(0)| +
∞
∑

n=1

|f(n)| · |z|n +
∞
∑

n=1

|f(−n)| · |z|−n

≤ |f(0)| +
∞
∑

n=1

|f(n)|ω(n) +
∞
∑

n=1

|f(−n)|(ω(−n)−1/n)−n

≤
∑

n∈Z

|f(n)|ω(n)

= ‖f‖1,ω.

Thus, for every z ∈ K(R−, R+) we can define a bounded linear functional on
l1(Z, ω) by

ϕz(f) =
∑

n∈Z

f(n)zn.

Then, for f, g ∈ l1(Z, ω),

ϕz(f ∗ g) =
∑

n∈Z

zn

(

∑

m∈Z

f(n − m)g(m)

)

=
∑

m∈Z

g(m)zm

(

∑

n∈Z

f(n − m)zn−m

)

= ϕz(f)ϕz(g).



106 2 Gelfand Theory

So ϕz ∈ Δ(l1(Z, ω)) and since ϕz(δ1) = z. The map z → ϕz from K(R−, R+)
into Δ(l1(Z, ω)) is injective, and the map is continuous since z → ϕz(δm) = zm

is continuous for each m. Conversely, let ϕ ∈ Δ(l1(Z, ω)) and set z = ϕ(δ1).
Then, for all n ∈ N,

|z|n = |ϕ(δn)| ≤ ‖δn‖1,ω = ω(n),

and hence |z| ≤ inf{ω(n)1/n : n ∈ N} = R+. Similarly, it is shown that
|z| ≥ R−. Since ϕ(δn) = zn for all n ∈ Z and the finite linear combinations of
the Dirac functions δn, n ∈ Z, are dense in l1(Z, ω), continuity of ϕ implies
that ϕ = ϕz. Thus z → ϕz is a continuous bijection between the compact
space K(R−, R+) and the Hausdorff space Δ(l1(Z, ω)) and hence is a home-
omorphism. �	

Propositions 2.8.7 and 2.8.8 in particular show that L1(R, ω) and l1(Z, ω)
are semisimple for any weight ω. Our intention is to establish semisimplicity
of L1(G, ω) for arbitrary locally compact Abelian groups. We start with the
following dichotomy.

Lemma 2.8.9. L1(G, ω) is either semisimple or radical.

Proof. Assume that L1(G, ω) is not radical, and fix any ϕ ∈ Δ(L1(G, ω)).
By Theorem 2.8.2, there exists a continuous function γ : G → C satisfying
γ(xy) = γ(x)γ(y), 0 < |γ(x)| ≤ ω(x) for all x, y ∈ G and

ϕ(f) =
∫

G

f(x)γ(x)dx

for all f ∈ L1(G, ω). For each α ∈ ̂G, define ψα ∈ L1(G, ω)∗ by

ψα(f) =
∫

G

f(x)α(x)γ(x)dx.

Then ψα ∈ Δ(L1(G, ω)) since αγ ∈ ̂G(ω). Now, let f be an element of the
radical of L1(G, ω). Then fγ ∈ L1(G) and

̂fγ(α) = ψα(f) = 0

for all α ∈ ̂G. Since L1(G) is semisimple (Corollary 2.7.9), it follows that
fγ = 0 and hence f = 0 almost everywhere since γ(x) �= 0 for all x ∈ G. This
shows that L1(G, ω) is semisimple. �	

Theorem 2.8.10. Let G be a locally compact Abelian group and ω a weight
on G. Then the Beurling algebra L1(G, ω) is semisimple.

Proof. By virtue of Lemma 2.8.9, it suffices to show that L1(G, ω) is not
radical. We construct a function f ∈ L1(G, ω) such that
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rL1(G,ω)(f) = lim
n→∞

‖fn‖1/n
1,ω > 0,

where fn denotes the n-fold convolution product of f .
Choose a relatively compact symmetric neighbourhood U of the identity

e of G and let f = 1U , the characteristic function of U . Then

M = sup{ω(x) : x ∈ U} < ∞

since ω is locally bounded, and ω(x) ≤ Mn for all x ∈ Un. Since f ∈ L1(G, ω)
and ω(x) ≥ ω(e)

ω(x−1) for all x ∈ G, it follows that

‖fn‖1,ω =
∫

G

|fn(x)|ω(x)dx

≥ ω(e)
∫

G

|1n
U (x)| 1

ω(x−1)
dx

≥ ω(e)
Mn

‖1n
U‖1.

This inequality implies that

rL1(G,ω)(f) = lim
n→∞

‖fn‖1/n
1,ω ≥ 1

M
lim

n→∞
‖1n

U‖1/n

=
1
M

rL1(G)(1U ),

and hence rL1(G,ω)(f) > 0, as required. �	

2.9 The Fourier algebra of a locally compact group

In this section we present a class of semisimple commutative Banach algebras
which is currently a matter of intensive study, the Fourier algebras A(G)
of locally compact groups G. When G is Abelian, A(G) can be shown to
be isometrically isomorphic to L1( ̂G). We introduce A(G) and determine its
structure space.

Let G be an arbitrary locally compact group. For functions f and g in
L2(G), the function f ∗ ǧ : G → C is defined by

f ∗ ǧ(x) =
∫

G

f(xy)g(y)dy.

Then f ∗ ǧ ∈ C0(G) and ‖f ∗ ǧ‖∞ ≤ ‖f‖2‖g‖2. Since the mappings f → f ∗ ǧ
and g → f ∗ ǧ from L2(G) into C0(G), respectively, are linear and continuous,
there is a unique continuous linear map φ from the projective tensor product
L2(G)̂⊗πL2(G) into C0(G) satisfying φ(f⊗g) = f ∗ǧ for all f and g in L2(G)).
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Definition 2.9.1. Let A(G) denote the range of the map

φ : L2(G)̂⊗πL2(G) → C0(G),

and endow A(G) with the quotient norm from L2(G)̂⊗πL2(G). Then A(G)
becomes a Banach space.

Since C0(G) is dense in L2(G), Cc(G)⊗Cc(G) is dense in L2(G)̂⊗πL2(G)
and hence π(Cc(G) ⊗ Cc(G)) is dense in A(G). So A(G) ∩ Cc(G) is dense in
A(G).

Theorem 2.9.2. With pointwise multiplication, A(G) is a Banach algebra.

Proof. Let f1, f2, g1, g2 ∈ Cc(G). We first show that

φ(f1 ⊗ g1)φ(f2 ⊗ g2) ∈ A(G)

and that

‖φ(f1 ⊗ g1)φ(f2 ⊗ g2)‖ ≤ ‖φ(f1 ⊗ g1)‖ · ‖φ(f2 ⊗ g2)‖.

To that end, for y ∈ G, define functions Fy and Gy on G by

Fy(x) = f1(xy)f2(x) and Gy(x) = g1(xy)g2(x).

Then Fy, Gy ∈ Cc(G) and the map y → Fy⊗Gy vanishes outside the compact
subset

C = (supp f2)−1 supp f1 ∩ (supp g2)−1 supp g1

of G. Moreover, the map y → Fy ⊗Gy from G into L2(G)̂⊗πL2(G) is contin-
uous. Indeed, for y, y0 ∈ G,

π(Fy ⊗ Gy − Fy0 ⊗ Gy0) ≤ ‖Fy − Fy0‖2(‖Gy − Gy0‖2 + ‖Gy0‖2)
+‖Fy0‖2‖Gy − Gy0‖2

and
‖Fy − Fy0‖2 ≤ ‖f2‖∞‖Ryf1 − Ry0f1‖2,

and similarly for Gy . Thus the vector-valued integral

H =
∫

C

(Fy ⊗ Gy)dy =
∫

G

(Fy ⊗ Gy)dy

exists and defines an element of L2(G)̂⊗πL2(G). Then

φ(H) = φ(f1 ⊗ g1)φ(f2 ⊗ g2).

Indeed, for each x ∈ G, we have
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φ(f1 ⊗ g1)(x)φ(f2 ⊗ g2)(x) =
∫

G

f1(xy)g1(y)dy

∫

G

f2(xz)g2(z)dz

=
∫

G

∫

G

f1(xzy)g1(zy)f2(xz)g2(z)dzdy

=
∫

G

(∫

G

Fy(xz)Gy(z)dz

)

dy

=
∫

G

φ(Fy ⊗ Gy)(x)dy

= φ(H)(x).

This shows that [φ(L2(G) ⊗ L2(G))]2 ⊆ A(G). We now need to estimate the
integral

∫

C π(Fy ⊗ Gy)dy. Note first that

∫

C

‖Fy‖2
2dy =

∫

C

(∫

C

|f1(xy)f2(x)|2dx

)

dy

=
∫

C

|f2(x)|2
(
∫

C

|f1(xy)|2dy

)

dx

= ‖f1‖2
2‖f2‖2

2,

and similarly
∫

G ‖Gy‖2
2dy = ‖g1‖2

2‖q2‖2
2. Thus, by the Cauchy-Schwarz in-

equality,
∫

C

π(Fy ⊗ Gy)dy =
∫

C

‖Fy‖2‖Gy‖2dy

≤
(∫

C

‖Fy‖2
2dy

)1/2(∫

C

‖Gy‖2
2dy

)1/2

= ‖f1‖2‖f2‖2‖g1‖2‖g2‖2

= π(f1 ⊗ g1)π(f2 ⊗ g2).

Combining this estimate with the above formula for φ(H) gives

‖φ(f1 ⊗ g1)φ(f2 ⊗ g2)‖A(G) ≤ ‖φ(f1 ⊗ g1)‖A(G)‖φ(f2 ⊗ g2)‖A(G).

Thus multiplication on φ(L2(G) ⊗ L2(G)) is continuous. This implies that
A(G) is closed under multiplication and the norm on A(G) is submultiplica-
tive. �	

The following lemma will be used to determine Δ(A(G)) and also later in
Chapter 5.

Lemma 2.9.3. Let a ∈ G and f ∈ A(G) such that f(a) = 0. Then, given
ε > 0, there exists h ∈ A(G) ∩ Cc(G) vanishing in a neighbourhood of a such
that ‖h − f‖A(G) ≤ ε.
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Proof. Notice first that, since A(G)∩Cc(G) is dense in A(G), without loss of
generality we can assume that f �= 0, f has compact support and ε ≤ ‖f‖∞
and ε < 1. Let

W = {y ∈ G : ‖f − Ryf‖A(G) ≤ ε}.
Then W is a compact neighbourhood of e in G. Choose an open neighbourhood
V of e such that V ⊆ W and sup{|f(ay)| : y ∈ V } ≤ ε, and choose a compact
neighbourhood U of e such that U ⊆ V and |U | ≥ |V |(1 − ε). Now, define
functions u, g and h by setting u = |U |−11U , g = 1aV f and

h = (f − g) ∗ ǔ ∈ A(G).

Then h has compact support since W is compact and f has compact support.
For any x ∈ G,

h(x) = |U |−1

∫

U

f(xy)[1 − 1aV (xy)]dy.

It follows that, if x ∈ G satisfies a−1xU ⊆ V, then h(x) = 0. Thus h vanishes
in a neighbourhood of a. Moreover,

‖u‖2 = |U |−1/2 ≤ |V |−1/2

(

1
1 − ε

)1/2

,

‖g‖2 =
(∫

aV

|f(y)|pdy

)1/2

≤ ε|V |1/2,

and

‖f − f ∗ ǔ‖A(G) =
∥

∥

∥

∥

f − |U |−1

∫

U

(Ryf)dy

∥

∥

∥

∥

A(G)

≤ sup
y∈U

‖f − Ryf‖A(G) ≤ ε.

Combining all these estimates, we obtain

‖f − h‖A(G) ≤ ‖f − f ∗ ǔ‖A(G) + ‖g‖2‖ǔ‖2 ≤ ε + ε

(

1
1 − ε

)1/2

.

This finishes the proof. �	

Theorem 2.9.4. Let G be a locally compact group. For x ∈ G, let ϕx :
A(G) → C denote the evaluation at x. Then the map x → ϕx is a home-
omorphism from G onto Δ(A(G)).

Proof. It is obvious that ϕx ∈ Δ(A(G)) and that the map x → ϕx is injective.
Now let ϕ ∈ Δ(A(G)) be given and suppose that ϕ �= ϕx for all x ∈ G. Then,
for each x ∈ G there exists fx ∈ A(G) such that ϕ(fx) = 1, but ϕx(fx) = 0.
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By Lemma 2.9.3, every g ∈ A(G) vanishing at x is the limit of a sequence
(gn)n in A(G) with the property that each gn vanishes in a neighbourhood of
x. Therefore we can assume that fx vanishes in a neighbourhood Vx of x.

Since A(G)∩Cc(G) is dense in A(G), there exists f0 ∈ Cc(G)∩A(G) such
that ϕ(f0) = 1. Choose x1, . . . , xn ∈ supp f0 such that

supp f0 ⊆
n
⋃

j=1

Vxj

and let
f = f0fx1 · . . . · fxn ∈ A(G).

Then f(x) = 0 for every x ∈ G, whereas

ϕ(f) = ϕ(f0)
n
∏

j=1

ϕ(fxj ) = 1.

This contradiction shows that ϕ = ϕx for some x ∈ G.
Finally, since the subalgebra A(G) of C0(G) strongly separates the points

of G, by Proposition 2.2.14 the topology on G coincides with the weak topol-
ogy defined by the set of functions x → f(x) = ϕx(f), f ∈ A(G). Thus the
map x → ϕx from G to Δ(A(G)) is a homeomorphism. �	

Of course, after identifying Δ(A(G)) with G, the Gelfand homomorphism
of A(G) is nothing but the identity mapping. In particular, A(G) is semisimple.

We close this section with a straightforward result which, in the terminol-
ogy of Chapter 4, implies that A(G) is regular.

Lemma 2.9.5. Let G be a locally compact group, K a compact subset of G and
U an open subset of G such that U ⊇ K. Then there exists u ∈ A(G)∩Cc(G)
with the following properties: 0 ≤ u ≤ 1, u(x) = 1 for all x ∈ K and u(x) = 0
for all x ∈ G \ U .

Proof. Since K is compact, there exists a compact symmetric neighbourhood
V of the identity such that KV 2 ⊆ U . Let

u(x) = |V |−1(1KV ∗ 1̌V )(x) = |V |−1 · |xV ∩ KV |.

Then 0 ≤ u ≤ 1. If x ∈ K, then |xV ∩ KV | = |xV | = |V |, so that u(x) = 1,
whereas if x �∈ KV 2, then xV ∩ KV = ∅ and hence u(x) = 0. Thus supp u ⊆
KV 2, which is compact. In particular, u(x) = 0 for all x ∈ G \ U . �	

2.10 The algebra of almost periodic functions

In Theorem 2.4.12 we have seen that the Stone–Čech compactification β(X)
of a completely regular topological space X arises as the structure space of
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the commutative C∗-algebra Cb(X). In this section we study, for G a locally
compact group, a certain C∗-subalgebra of Cb(G), the algebra AP (G) of al-
most periodic functions on G, and show that Δ(AP (G)) is homeomorphic to
the Bohr compactification of G.

Let G be a topological group. A complex-valued bounded continuous func-
tion f on G is called left almost periodic (respectively, right almost periodic)
if the set Cf = {Lxf : x ∈ G} (respectively, the set Df = {Ryf : y ∈ G})
is relatively compact in (Cb(G), ‖ · ‖∞). Let AP (G) denote the set of all left
almost periodic functions on G.

Example 2.10.1. Let G be a compact group. Then AP (G) = C(G). In fact,
for f ∈ C(G) the map x → Lxf from G into C(G) is continuous because f is
uniformly continuous and

‖Lxf − Lyf‖∞ = sup
t∈G

|f(x−1t) − f(y−1t)|.

So Cf is a continuous image of the compact group G, hence compact.

Lemma 2.10.2. AP (G) is a closed ∗-subalgebra of Cb(G).

Proof. It is clear that Cf+g ⊆ Cf +Cg, Cαf = αCf and Cfg ⊆ CfCg for f, g ∈
Cb(G) and α ∈ C. Thus AP (G) is a subalgebra of Cb(G). Also f ∈ AP (G)
implies that f ∈ AP (G). It remains to show that AP (G) is closed in Cb(G).

Let f ∈ AP (G). Since Cf is bounded in Cb(G), by the Arzela–Ascoli
theorem it suffices to verify that Cf is equicontinuous. To that end, let x ∈ G
and ε > 0 be given. Choose g ∈ AP (G) such that ‖f − g‖∞ ≤ ε/3. Since Cg is
equicontinuous, there is a neighbourhood V of x such that |Lag(y)−Lag(x)| ≤
ε/3 for all a ∈ G and y ∈ V. If follows that

|Laf(y) − Laf(x)| ≤ |Laf(y) − Lag(y)| + |Lag(y) − Lag(x)|
+ |Lag(x) − Laf(x)|

≤ 2‖f − g‖∞ + |Lag(y) − Lag(x)| ≤ ε

for all y ∈ V and a ∈ G. So Cf is equicontinuous. �	

Since AP (G) is a unital commutative C∗-algebra, Theorem 2.4.5 implies
the following

Corollary 2.10.3. Let Δ(AP (G)) denote the structure space of AP (G). Then
the Gelfand homomorphism is an isometric ∗-isomorphism from AP (G) onto
C(Δ(AP (G))).

Each x ∈ G defines an element ϕx ∈ Δ(AP (G)) by ϕx(f) = f(x), f ∈
AP (G).

Lemma 2.10.4. The mapping φ : x → ϕx from G into Δ(AP (G)) is conti-
nuous and has dense range.
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Proof. Because Δ(AP (G)) carries the w∗-topology and the functions x →
ϕx(f) = f(x), f ∈ AP (G), are continuous on G, it follows that φ is continuous.

Suppose that there exists a nonempty open subset U of Δ(AP (G)) such
that U ∩φ(G) = ∅. Then, by Urysohn’s lemma there exists g ∈ C(Δ(AP (G)))
with g �= 0 and g|Δ(AP (G))\U = 0. By Corollary 2.10.3, g = ̂f for some
f ∈ AP (G). But then

f(x) = ϕx(f) = ̂f(ϕx) = g(ϕx) = 0

for all x ∈ G, contradicting f �= 0. Thus φ(G) is dense in Δ(AP (G)). �	

Our aim is to introduce a group structure on Δ(AP (G)) which makes
Δ(AP (G)) a compact group and φ a group homomorphism. Of course, the
mapping φ is in general not injective and it is not clear at all that the
families of points in G which cannot be separated by AP (G) are cosets of
some normal subgroup of G and that therefore φ defines a group structure
on φ(G) ⊆ Δ(AP (G)). Moreover, supposing that this problem can be satis-
factorily settled, there remains the question of extending the group structure
on φ(G) to the whole of Δ(AP (G)). To handle these problems requires us to
consider two-sided translates of f ∈ AP (G) and to show that actually such
an f is also right almost periodic.

Lemma 2.10.5. Let f ∈ AP (G) and ε > 0. Then there exist finitely many
a1, . . . , an ∈ G with the following property. For every a ∈ G there exists some
j ∈ {1, . . . , n} such that

|f(xay) − f(xajy)| < ε

for all x, y ∈ G.

Proof. There exist b1, . . . , bm ∈ G such that the set {Lbjf : 1 ≤ j ≤ m} forms
an ε/4-net for Cf . Let Γ be the finite set of all mappings γ from {1, . . . , m}
to itself with the property that there exists aγ ∈ G such that

‖Lbγ(i)f − Lbiaγ f‖∞ <
ε

4

for i = 1, . . . , m. For each γ ∈ Γ , choose such an aγ . Now, given any a ∈ G, by
the choice of b1, . . . , bm for every 1 ≤ i ≤ m there exists some j(i) ∈ {1, . . . , m}
such that

‖Lbiaf − Lbj(i)f‖∞ <
ε

4
.

So i → j(i) defines an element of Γ . It follows that for every a ∈ G we find
some γ ∈ Γ such that

‖Lbiaf − Lbiaγ f‖∞ <
ε

2

for all 1 ≤ i ≤ m. Since for every x ∈ G there exists bi so that ‖Lxf−Lbif‖∞ <
ε/4, we obtain that
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‖Lxaf − Lxaγ f‖∞ ≤ ‖Lxaf − Lbiaf‖∞ + ‖Lbiaf − Lbiaγ f‖∞
+ ‖Lbiaγ f − Lxaγf‖∞

<
ε

4
+

ε

2
+

ε

4
= ε.

Thus we have seen that for every a ∈ G there exists some aγ such that

|f(xay) − f(xaγy)| ≤ ‖Lxaf − Lxaγf‖∞ < ε

for all x, y ∈ G. Now, enumerate {aγ : γ ∈ Γ} as {a1, . . . , an}. �	

Corollary 2.10.6. Let f ∈ AP (G) and ε > 0. Then there exist a1, . . . , an ∈ G
such that the functions LaiRaj f, 1 ≤ i, j ≤ n, form an ε-net for the set of all
two-sided translates LaRbf, a, b ∈ G.

Proof. Choose 0 < δ < ε/2. By Lemma 2.10.5, there exist a1, . . . , an ∈ G
with the property that for any a ∈ G there is j ∈ {1, . . . , n} such that, for all
x, y ∈ G, |f(xay) − f(xajy)| < δ. Thus, given a, b ∈ G, there exist i and j
such that

|f(at) − f(ait)| < δ and |f(sb) − f(saj)| < δ

for all s, t ∈ G. It follows that, for all x ∈ G,

|f(axb) − f(aixaj)| ≤ |f(axb) − f(aixb)| + |f(aixb) − f(aixaj)|
< 2δ,

whence ‖LaRbf − LaiRaj f‖∞ ≤ 2δ < ε. �	

Corollary 2.10.7. Retain the notation of Corollary 2.10.6. If x and y are
elements of G such that

|f(aixaj) − f(aiyaj)| < ε

for all 1 ≤ i, j ≤ n, then

|f(axb) − f(ayb)| < 3ε

for all a, b ∈ G.

Proof. Given a, b ∈ G, by Corollary 2.10.6 there exist i and j such that

‖LaRbf − LaiRaj f‖∞ < ε.

Combining with the presumed inequality, we get

|f(axb) − f(ayb)| ≤ ‖LaRbf − LaiRaj f‖∞
+ |f(aixaj) − f(aiyaj)|
+ ‖LaiRaj f − LaRbf‖∞

< 3ε,

as claimed. �	
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It follows from Corollary 2.10.6 that every left almost periodic function is
automatically right almost periodic. Therefore, in the sequel we simply call
the functions in AP (G) almost periodic rather than left almost periodic.

Another consequence of Corollary 2.10.6 is that every almost periodic
function is uniformly continuous. Now, on every noncompact locally compact
group G one can construct a bounded continuous function which fails to be
uniformly continuous (Exercise 2.12.55). Thus AP (G) is a proper subalgebra
of Cb(G) whenever G is a noncompact locally compact group.

Let ϕ, ψ ∈ Δ(AP (G)). For neighbourhoods U of ϕ and V of ψ in
Δ(AP (G)), let

ΔU,V = {ϕxy : x, y ∈ G such that ϕx ∈ U and ϕy ∈ V }.
Then ΔU,V �= ∅ since φ(G) is dense in Δ(AP (G)). Let U and V be the set of all
neighbourhoods of ϕ and ψ, respectively. Because ΔU1,V1 ⊆ ΔU2,V2 whenever
U1 ⊆ U2 and V1 ⊆ V2, the collection of all closed subsets ΔU,V of Δ(AP (G)),
where U ∈ U and V ∈ V , has the finite intersection property. Δ(AP (G)) being
compact, it follows that the set

Δϕ,ψ :=
⋂

{ΔU,V : U ∈ U , V ∈ V}

is nonempty.
We shall see soon (Corollary 2.10.9) that Δϕ,ψ is a singleton for any two

elements ϕ, ψ ofΔ(AP (G)). Since ϕxy ∈ Δϕx,ϕy it follows in particular that
Δϕx,ϕy = {ϕxy} for all x, y ∈ G.

Lemma 2.10.8. Let α, β ∈ Δ(AP (G)) and f ∈ AP (G). Let ε > 0 and let
{Lx1f, . . . , Lxnf} be an ε-net for Cf and {Ry1f, . . . , Rymf} an ε-net for Df .
Define neighbourhoods U and V of α and β, respectively, by

U = U(α, Ry1f, . . . , Rymf, ε) and V = U(β, Lx1f, . . . , Lxnf, ε).

If x, a, y, b ∈ G are such that ϕx, ϕa ∈ U and ϕy, ϕb ∈ V, then

|ϕxy(f) − ϕab(f)| < 8ε.

Proof. Choose j ∈ {1, . . . , n} and k ∈ {1, . . . , m} such that

‖Lx−1f − Lxjf‖∞ < ε and ‖Rbf − Ryk
f‖∞ < ε.

Then we have

|ϕxy(f) − ϕab(f)| ≤ |f(xy) − f(xb)| + |f(xb) − f(ab)|
= |Lx−1f(y) − Lx−1f(b)| + |Rbf(x) − Rbf(a)|
≤ |Lx−1f(y) − Lxjf(y)| + |Lxj f(y) − Lxjf(b)|

+ |Lxjf(b) − Lx−1f(b)| + |Rbf(x) − Ryk
f(x)|

+ |Ryk
f(x) − Ryk

f(a)| + |Ryk
f(a) − Rbf(a)|

≤ 2‖Lx−1f − Lxj f‖∞ + |Lxjf(x) − Lxjf(a)|
+ 2‖Rbf − Ryk

f‖∞ + |Ryk
f(y) − Ryk

f(b)‖
≤ 4ε + |ϕy(Lxjf) − ϕb(Lxj f)| + |ϕx(Ryk

f) − ϕa(Ryk
f)|.
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Now, since ϕx, ϕa ∈ U and ϕy, ϕb ∈ V,

|ϕx(Ryk
f) − ϕa(Ryk

f)| < 2ε and |ϕy(Lxj f) − ϕb(Lxjf)| < 2ε.

It follows that |ϕxy(f) − ϕab(f)| < 8ε. �	

Corollary 2.10.9. For each pair of elements ϕ, ψ of Δ(AP (G)), Δϕ,ψ is a
singleton.

Proof. Let α, β ∈ Δϕ,ψ and f ∈ AP (G). We show that |α(f) − β(f)| < δ for
each δ > 0. Fix δ and let ε = δ/24. Let U and V be defined as in Lemma
2.10.8. By definition of Δϕ,ψ there exist x, a, y, b ∈ G such that ϕx, ϕa ∈
U, ϕy, ϕb ∈ V , and

|α(f) − ϕxy(f)| <
δ

3
and |β(f) − ϕab(f)| <

δ

3
.

From Lemma 2.10.8 we now infer that

|α(f) − β(f)| ≤ |α(f) − ϕxy(f)| + |ϕxy(f) − ϕab(f)|
+ |ϕab(f) − β(f)|

≤ δ

3
+

δ

3
+ 8ε = δ,

as required. �	

Now we are able to introduce a group structure on Δ(AP (G)).

Theorem 2.10.10. Let G be a topological group. For ϕ, ψ ∈ Δ(AP (G)), let
ϕψ denote the unique element of Δϕ,ψ. Then the assignment

(ϕ, ψ) → ϕψ, Δ(AP (G)) × Δ(AP (G)) → Δ(AP (G))

turns Δ(AP (G)) into a compact group. Furthermore, ϕxϕy = ϕxy for x, y ∈
G.

Proof. The last statement is clear since Δϕx,ϕy = {ϕxy}. We show next that
multiplication on Δ(AP (G)) is continuous. Let α and β be two elements of
Δ(AP (G)). It suffices to show that given δ > 0 and f1, . . . , fn ∈ AP (G), there
exist neighbourhoods U of α and V of β in Δ(AP (G)), respectively, such that

|ϕψ(fj) − αβ(fj)| < δ

for all ϕ ∈ U and ψ ∈ V and j = 1, . . . , n.
Let ε = δ/10 and for any ρ ∈ Δ(AP (G)) let

Wρ = {γ ∈ Δ(AP (G)) : |γ(fj) − ρ(fj)| < ε for 1 ≤ j ≤ n}.

For each j = 1, . . . , n, Lemma 2.10.8 provides neighbourhoods Uj of α and Vj

of β such that
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|ϕxy(fj) − ϕab(fj)| < 8ε

whenever x, a, y, b ∈ G are such that ϕx, ϕa ∈ Uj and ϕy, ϕb ∈ Vj . Let U =
∩n

j=1Uj and V =
⋂n

j=1 Vj . Since αβ ∈ ΔU,V , we have ΔU,V ∩ Wαβ �= ∅, and
hence there exist a, b ∈ G such that ϕa ∈ U, ϕb ∈ V and ϕab ∈ Wαβ . Now, let
ϕ ∈ U and ψ ∈ V be arbitrary. Then ΔU,V ∩ Wϕψ �= ∅ and hence there exist
x, y ∈ G such that ϕx ∈ U, ϕy ∈ V , and ϕxy ∈ Wϕψ. Therefore we have

|ϕab(fj) − αβ(fj)| < ε and |ϕxy(fj) − ϕψ(fj)| < ε

for j = 1, . . . , n. Because ϕx, ϕa ∈ U and ϕy, ϕb ∈ V, |ϕxy(fj)− ϕab(fj)| < 8ε
for j = 1, . . . , n. Combining these inequalities gives

|ϕψ(fj) − αβ(fj)| ≤ |ϕψ(fj) − ϕxy(fj)| + |ϕxy(fj) − ϕab(fj)|
+ |ϕab(fj) − αβ(fj)| < 10ε

= δ.

Thus multiplication on Δ(AP (G)) is continuous.
It remains to show the existence and continuity of inverses in Δ(AP (G)).

Let ϕ ∈ AP (G) and let (xα)α be a net in G such that ϕxα → ϕ in Δ(AP (G)).
We show that the net (ϕx−1

α
)α converges to some element of Δ(AP (G)) and

that the limit does not depend on the choice of the net (xα)α in G but only
on the fact that ϕxα → ϕ.

Let f ∈ AP (G) and ε > 0. By Corollary 2.10.6 there exist a1, . . . , an ∈ G
such that the functions LaiRaj f, 1 ≤ i, j ≤ n, form an ε/3-net for the set of
all two-sided translates LaRbf, a, b ∈ G. Define a neighbourhood U of ϕ in
Δ(AP (G)) by

U = {ψ ∈ Δ(AP (G)) : |ψ(LaiRaj f) − ϕ(LaiRaj f)| < ε/3, 1 ≤ i, j ≤ n}.

If x and y are elements of G such that ϕx, ϕy ∈ U, then

|f(aixaj) − f(aiyaj)| < ε/3, 1 ≤ i, j ≤ n,

and hence, by Corollary 2.10.7,

|f(axb) − f(ayb)| < ε

for all a, b ∈ G. Taking a = x−1 and b = y−1 this becomes |f(y−1)−f(x−1)| <
ε. This shows that, for each f ∈ AP (G), the net

(ϕx−1
α

(f))α = (f(x−1
α ))α

forms a Cauchy net in C and that

lim
α

ϕx−1
α

(f) = lim
β

ϕy−1
β

(f),

where (yβ)β is another net in G such that ϕyβ
→ ϕ in Δ(AP (G)). Thus we

can define a map ϕ−1 : AP (G) → C by
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ϕ−1(f) = lim
α

ϕx−1
α

(f), f ∈ AP (G),

by taking (xα)α to be any net in G such that ϕxα → ϕ. It is clear that
ϕ−1 ∈ Δ(AP (G)) and that ϕ−1

x = ϕx−1 for every x ∈ G. Since multiplication
in Δ(AP (G)) is continuous and ϕab = ϕaϕb for all a, b ∈ G, it follows that

ϕϕ−1 = lim
α

ϕxα · lim
α

ϕx−1
α

= lim
α

(ϕxαx−1
α

) = ϕe.

Consequently, Δ(AP (G)) is a group and ϕ−1 is the inverse of ϕ.
Finally, the map ϕ → ϕ−1 from Δ(AP (G)) into Δ(AP (G)) is continuous.

To see this, let ψ ∈ Δ(AP (G)), f ∈ AP (G), and δ > 0. Define g ∈ AP (G) by
g(x) = f(x−1). If ϕ ∈ Δ(AP (G)) and x, y ∈ G are such that

|ϕ(g) − ψ(g)| < δ, |ϕx(g) − ϕ(g)| < δ and |ϕy(g) − ψ(g)| < δ,

then
|ϕx−1(f) − ϕy−1(f)| = |ϕx(g) − ϕy(g)| < 3δ

and hence

|ϕ−1(f) − ψ−1(f)| ≤ |ϕ−1(f) − ϕx−1(f)| + |ϕy−1(f) − ψ−1(f)| + 3δ.

As we have shown above, ϕx−1 → ϕ−1 and ϕy−1 → ψ−1 whenever ϕx → ϕ
and ϕy → ψ. Hence it follows that ϕ → ϕ−1 is continuous. �	

We have thus achieved making Δ(AP (G)) a compact group having the
following properties.

(1) The map φ : G → Δ(AP (G)) is a homomorphism with dense range.
(2) A bounded continuous function f on G is almost periodic if and only if

there exists a function ̂f ∈ C(Δ(AP (G))) such that f(x) = ̂f(φ(x)) for
all x ∈ G.

We remark next that properties (1) and (2) determine the compact group
Δ(AP (G)) up to topological isomorphism.

Remark 2.10.11. Let Δ = Δ(AP (G)) and suppose that Δ′ is a second
compact group and φ′ : G → Δ′ is a homomorphism satisfying the anal-
ogous properties (1) and (2). Then ̂f ′ → ̂f is an algebraic isomorphism of
C(Δ′) onto C(Δ). Let δ : Δ → Δ′ be the associated homeomorphism; that is,
δ(ϕ)( ̂f ′) = ϕ( ̂f ) for ϕ ∈ Δ and f ∈ AP (G). Then

δ(φ(x))( ̂f ′) = φ(x)( ̂f ) = f(x) = φ′(x)( ̂f ′)

for all x ∈ G and f ∈ AP (G). Thus δ extends the homomorphism φ′ ◦ φ−1 :
φ(G) → φ′(G). Because δ is a homeomorphism and φ(G) is dense in Δ, it
follows that δ is a topological isomorphism.
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Definition 2.10.12. The topological group G is said to be almost periodic
if the homomorphism φ : G → Δ(AP (G)) is injective. Even though in gen-
eral φ need not be injective, Δ(AP (G)) is called the Bohr or almost periodic
compactification of G and usually denoted b(G).

In the remainder of this section we use the notation b(G) in order to
emphasize the fact that b(G) is a compact group rather than just the structure
space of the algebra AP (G).

We now turn to locally compact Abelian groups. Of course, in that case a
major portion of the analysis in this section is superfluous. However, for such
G, considerably more can be said about AP (G), and b(G) can be identified
in terms of G only.

Let T (G) denote the linear subspace of Cb(G) consisting of all finite linear
combinations of characters of G. Functions in T (G) are called trigonometric
polynomials. Since ̂G is a group, T (G) is a subalgebra of Cb(G). For χ ∈ ̂G
and x ∈ G we have Lxχ(y) = χ(x)χ(y). Thus

Cχ = {χ(x)χ : x ∈ G} ⊆ T · χ,

which is a compact subset of Cb(G). This implies that T (G) ⊆ AP (G).

Theorem 2.10.13. Let G be a locally compact Abelian group. The Gelfand
isomorphism f → ̂f from AP (G) onto C(b(G)) maps ̂G onto ̂b(G) and hence
T (G) onto T (b(G)). Moreover, T (G) is norm dense in AP (G).

Proof. It suffices to show that if γ ∈ ̂G, then γ̂ ∈ ̂b(G), and that every
character of b(G) arises in this way. For x, y ∈ G, we have

γ̂(ϕxϕy) = γ̂(ϕxy) = γ(xy) = γ(x)γ(y) = γ̂(ϕx)γ̂(ϕy).

Since γ̂ is continuous on b(G) and φ(G) is dense in b(G), we conclude that
γ̂ ∈ ̂b(G).

Conversely, if χ ∈ ̂b(G) then χ ◦ φ ∈ ̂G since φ is a continuous homomor-
phism from G into b(G). By the first part of the proof χ̂ ◦ φ ∈ ̂b(G). The
two characters χ and χ̂ ◦ φ of b(G) agree on the dense subset φ(G), whence
χ = χ̂ ◦ φ.

Because the Gelfand homomorphism of AP (G) onto C(b(G)) is isometric
and, as we have just seen, maps T (G) onto T (b(G)). Thus for the last state-
ment of the theorem it is enough to observe that T (b(G)) is norm dense in
C(b(G)). Now, if H is a compact Abelian group, then T (H) is ∗-subalgebra of
C(H) which strongly separates the points of H . Thus T (H) is dense in C(H)
by the Stone–Weierstrass theorem. �	

Corollary 2.10.14. Let G be a locally compact Abelian group, and let ̂Gd

denote the algebraic group ̂G endowed with the discrete topology. Then the
discrete dual group ̂b(G) of b(G) is isomorphic to ̂Gd.
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Proof. Being the dual group of the compact group b(G), ̂b(G) is discrete. By
Theorem 2.10.13, the Gelfand homomorphism of AP (G) maps ̂G onto ̂b(G)
and this map is obviously a group isomorphism. Thus ̂Gd is isomorphic to
̂b(G). �	

Employing the Pontryagin duality theorem for locally compact Abelian
groups, Corollary 2.10.14 can be rephrased as follows. The group b(G) is
topologically isomorphic to the dual group of ̂Gd since it is topologically iso-
morphic to the dual group of ̂b(G).

2.11 Structure spaces of tensor products

The purpose of this section is to determine the structure space of the tensor
product of two commutative Banach algebras and to investigate its semisim-
plicity. For the basic theory of tensor products of Banach algebras we refer to
Section 1.5. We remind the reader that ε denotes the injective tensor norm.

Lemma 2.11.1. Let A and B be commutative Banach algebras and let γ be
an algebra cross-norm on A ⊗ B such that γ ≥ ε. Given ϕ ∈ Δ(A) and
ψ ∈ Δ(B), there is a unique element of Δ(A ̂⊗γB), denoted ϕ ̂⊗γψ, such that

(ϕ ̂⊗γψ)(x ⊗ y) = ϕ(x)ψ(y)

for all x ∈ A and y ∈ B. Furthermore, the mapping

Δ(A) × Δ(B) → Δ(A ̂⊗γB), (ϕ, ψ) → ϕ ̂⊗γψ

is a bijection.

Proof. Let ϕ ∈ Δ(A) and ψ ∈ Δ(B) and recall first that there is a unique
homomorphism ω : A ⊗ B → C such that ω(x ⊗ y) = ϕ(x)ψ(y) for all x ∈ A
and y ∈ B. By definition of ε and since γ ≥ ε, for any x1, . . . , xn ∈ A and
y1, . . . , yn ∈ B, we have
∣

∣

∣

∣

∣

ω

(

n
∑

j=1

xj ⊗ yj

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

j=1

ϕ(xj)ψ(yj)

∣

∣

∣

∣

∣

≤ ε

(

n
∑

j=1

xj ⊗ yj

)

≤ γ

(

n
∑

j=1

xj ⊗ yj

)

.

Thus ω is continuous with respect to γ and therefore extends uniquely to an
element of Δ(A ⊗γ B), denoted ϕ ̂⊗γψ.

The mapping (ϕ, ψ) → ϕ ̂⊗γψ is injective. To verify this, let ϕ1, ϕ2 ∈ Δ(A)
and ψ1, ψ2 ∈ Δ(B) such that ϕ1 ̂⊗γψ1 = ϕ2 ̂⊗γψ2. Fix b ∈ B such that
ψ1(b) = 1. Then, for all x ∈ A,

ϕ1(x) = ϕ1(x)ψ1(b) = (ϕ1 ⊗ ψ1)(x ⊗ b) = (ϕ2 ⊗ ψ2)(x ⊗ b) = ϕ2(x)ψ2(b).
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Now, since ϕ1 and ϕ2 are non-zero homomorphisms, this equation implies
that ψ2(b) = 1. Hence ϕ1 = ϕ2, and this in turn yields that ψ1 = ψ2.

It remains to show that given ρ ∈ Δ(A ̂⊗γB), there exist ϕ ∈ Δ(A) and
ψ ∈ Δ(B) such that ρ(x ⊗ y) = ϕ(x)ψ(y) for all x ∈ A and y ∈ B. Choose
a ∈ A and b ∈ B such that ρ(a⊗ b) = 1, and define ϕ : A → C and ψ : B → C

by
ϕ(x) = ρ(xa ⊗ b) and ψ(y) = ρ(a ⊗ yb).

Clearly, ϕ and ψ are linear maps and

ϕ(x)ψ(y) = ρ(xa2 ⊗ yb2) = ρ(x ⊗ y)ρ(a2 ⊗ b2) = ρ(x ⊗ y)

for all x ∈ A and y ∈ B. In particular, both ϕ and ψ are nonzero. Finally, for
x1, x2 ∈ A,

ϕ(x1x2) = ρ(x1x2a ⊗ b) = ρ(x1x2a ⊗ b)ρ(a ⊗ b)
= ρ((x1a ⊗ b)(x2a ⊗ b)) = ρ(x1a ⊗ b)ρ(x2a ⊗ b)
= ϕ(x1)ϕ(x2),

and similarly, ψ(y1y2) = ψ(y1)ψ(y2) for all y1, y2 ∈ B. Thus ϕ and ψ have all
the required properties. �	

Theorem 2.11.2. Let A and B be commutative Banach algebras and let γ be
an algebra cross-norm on A ⊗ B such that γ ≥ ε. Then the mapping

Δ(A) × Δ(B) → Δ(A ̂⊗γB), (ϕ, ψ) → ϕ ̂⊗γψ

is a homeomorphism.

Proof. As to continuity, it suffices to show that for each c ∈ A ̂⊗γB, the
function (ϕ, ψ) → (ϕ ̂⊗γψ)(c) is continuous on Δ(A) × Δ(B). For c ∈ A ⊗B,
say c =

∑n
j=1 aj ⊗ bj , aj ∈ A, bj ∈ B, 1 ≤ j ≤ n, this follows at once from the

equation

(ϕ ̂⊗γψ)(c) =
n
∑

j=1

ϕ(aj)ψ(bj).

Now, let z ∈ A ̂⊗γB be arbitrary. Since ‖ϕ ̂⊗γψ‖ ≤ 1, the function (ϕ, ψ) →
(ϕ ̂⊗γψ)(z) is a uniform limit on Δ(A) × Δ(B) of functions (ϕ, ψ) →
(ϕ ̂⊗γψ)(c), c ∈ A ⊗ B, and therefore is continuous.

For openness, it is enough to prove that the mappings ϕ ̂⊗γψ → ϕ and
ϕ ̂⊗γψ → ψ from Δ(A ̂⊗γB) into Δ(A) and Δ(B), respectively, are continu-
ous. To show that the map ϕ ̂⊗γψ → ϕ is continuous, we check that, for each
a ∈ A, the function

Fa : Δ(A ̂⊗γB) → C, ϕ ̂⊗γψ → ϕ(a)

is continuous. Fix a ∈ A and for every ρ = ϕ ̂⊗γψ ∈ Δ(A ̂⊗γB) select aρ ∈ A
and bρ ∈ B such that ρ(aρ ⊗ bρ) = 1. Then
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Fa(ρ) = ϕ(a)ϕ(aρ)ψ(bρ) = ϕ(aaρ)ψ(bρ) = ρ(aaρ ⊗ bρ).

Now let (ρα)α be a net in Δ(A ̂⊗γB) converging to some ρ ∈ Δ(A ̂⊗γB). Then

ρα(aρ ⊗ bρ)ρα(aaρα ⊗ bρα) = ρα(aaρ ⊗ bρ)ρα(aρα ⊗ bρα)
= ρα(aaρ ⊗ bρ)
→ ρ(aaρ ⊗ bρ).

Since ρα(aρ ⊗ bρ) → ρ(aρ ⊗ bρ) = 1, we conclude that

Fa(ρα) = ρα(aaρα ⊗ bρα) → ρ(aaρ ⊗ bρ) = Fa(ρ).

Thus Fa is a continuous function. Similarly, the map ϕ ̂⊗γψ → ψ from
Δ(A ̂⊗γB) to Δ(B) is continuous. �	

As the reader will have observed, the last slightly more technical part of
the preceding proof can be omitted when A and B are unital. Indeed, in
this case the map (ϕ, ψ) → ϕ ̂⊗γψ is a continuous bijection from the com-
pact space Δ(A) × Δ(B) to the Hausdorff space Δ(A ̂⊗γB) and hence is a
homeomorphism.

Corollary 2.11.3. Let A, B and γ be as before. If A ̂⊗γB is semisimple, then
so are A and B.

Proof. Let a ∈ A such that â = 0. Fix any nonzero b ∈ B. Then

â ⊗ b(ϕ ̂⊗γψ) = ϕ(a)ψ(b) = 0

for all ϕ ∈ Δ(A) and ψ ∈ Δ(B). Since every ρ ∈ Δ(A ̂⊗γB) is of the form
ρ = ϕ ̂⊗γψ for some ϕ ∈ Δ(A) and ψ ∈ Δ(B), we get that â ⊗ b = 0. Because
A ̂⊗γB is semisimple, it follows that a ⊗ b = 0 and hence a = 0. So A is
semisimple, and similarly for B. �	

Remark 2.11.4. The converse to Corollary 2.11.3 is false. In fact, Milne [89]
has shown that the following two conditions are equivalent.

(i) The projective tensor product of any two semisimple commutative Banach
algebras is semisimple.

(ii) Every Banach space has the approximation property.

However, as first shown by Enflo [31], there are Banach spaces which don’t
share the approximation property (for all this, compare [114]). In this context
compare also Theorem 2.11.6 below and Appendix A.2.

Elements of Δ(B) give rise to certain continuous homomorphisms from
A ̂⊗γB onto A. These homomorphisms are extremely useful when dealing
with tensor products.
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Lemma 2.11.5. Let A and B be commutative Banach algebras and let γ be
an algebra cross-norm on A ⊗ B such that γ ≥ ε. Let ψ ∈ Δ(B). Then
there is a unique continuous homomorphism φψ : A ̂⊗γB → A such that
φψ(a ⊗ b) = ψ(b)a for all a ∈ A and b ∈ B.

Proof. The map A × B → A, (a, b) → ψ(b)a is bilinear. Hence there is a
unique linear map φψ : A ⊗ B → A satisfying φψ(a ⊗ b) = ψ(b)a for all
a ∈ A and b ∈ B. Now, let a1, . . . , an ∈ A and b1, . . . , bn ∈ B. Then, with
x =

∑n
j=1 aj ⊗ bj ,

‖φψ(x)‖ =

∥

∥

∥

∥

∥

n
∑

j=1

ψ(bj)aj

∥

∥

∥

∥

∥

= sup

{∣

∣

∣

∣

∣

f

(

n
∑

j=1

ψ(bj)aj

)∣

∣

∣

∣

∣

: f ∈ A∗
1

}

≤ sup

{∣

∣

∣

∣

∣

n
∑

j=1

f(aj)g(bj)

∣

∣

∣

∣

∣

: f ∈ A∗
1, g ∈ B∗

1

}

= ε(x)

≤ γ(x).

Thus φψ is norm decreasing for the norm γ on A ⊗ B and therefore extends
uniquely to a continuous linear map, also denoted φψ, from Â⊗γB to A.
Finally, φψ is a homomorphism since

φψ((a ⊗ b)(a′ ⊗ b′)) = φψ(aa′ ⊗ bb′) = ψ(bb′)aa′

= (ψ(b)a)(ψ(b′)a′)
= φψ(a ⊗ b)φψ(a′ ⊗ b′)

for a, a′ ∈ A and b, b′ ∈ B. �	

Of course, starting with ϕ ∈ Δ(A), we obtain an analogous homomorphism
φϕ : A ̂⊗γB → B. We proceed with two applications of Lemma 2.11.5 which
concern the projective tensor product. The first one settles the important
question of when A ̂⊗πB is semisimple.

Theorem 2.11.6. Let A and B be commutative Banach algebras. Then the
projective tensor product A ̂⊗πB is semisimple if and only if the following two
conditions are satisfied.

(i) A and B are semisimple.
(ii) The natural homomorphism A ̂⊗πB → A ̂⊗εB is injective.

Proof. Suppose first that A ̂⊗πB is semisimple. Then A and B are semisimple
by Corollary 2.11.3. Let φ be the natural homomorphism from A ̂⊗πB into
A ̂⊗εB and let c =

∑∞
j=1 aj ⊗ bj, where

∑∞
j=1 ‖aj‖ · ‖bj‖ < ∞, be an element

of A ̂⊗πB such that φ(c) = 0. Then
∑∞

j=1 f(aj)g(bj) = 0 for all f ∈ A∗ and
g ∈ B∗. In particular,

(ϕ ̂⊗πψ)(c) =
∞
∑

j=1

ϕ(aj)ψ(bj) = 0
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for all ϕ ∈ Δ(A) and ψ ∈ Δ(B). Since A ̂⊗πB is semisimple and every element
of Δ(A ̂⊗πB) is of the form ϕ ̂⊗πψ, it follows that c = 0. Thus φ is injective.

Conversely, suppose that conditions (i) and (ii) hold. Let c be an element
in the radical of A ̂⊗πB, say c =

∑∞
j=1 aj ⊗ bj . Since A is semisimple, from

Lemma 2.11.5 we get that
∑∞

j=1 ψ(bj)aj = 0 for all ψ ∈ Δ(B). This implies
that, for every f ∈ A∗ and all ψ ∈ Δ(B),

0 = f

⎛

⎝

∞
∑

j=1

ψ(bj)aj

⎞

⎠ =
∞
∑

j=1

ψ(bj)f(aj) = ψ

⎛

⎝

∞
∑

j=1

f(aj)bj

⎞

⎠ .

Since B is semisimple, it follows that
∑∞

j=1 f(aj)bj = 0 for every f ∈ A∗.
This in turn gives

0 = g

⎛

⎝

∞
∑

j=1

f(aj)bj

⎞

⎠ =
∞
∑

j=1

f(aj)g(bj) = (f ̂⊗εg)(c)

for every f ∈ A∗ and g ∈ B∗. Now, condition (ii) yields c = 0. So A ̂⊗πB is
semisimple. �	
Proposition 2.11.7. Let A and B be commutative Banach algebras. Then
A ̂⊗πB is unital if and only if both A and B are unital.

Proof. It is apparent that if eA and eB are identities of A and B, respectively,
then eA ⊗ eB is an identity of A ̂⊗πB.

Conversely, let
∑∞

j=1 aj ⊗ bj, where aj ∈ A and bj ∈ B, represent an
identity for A ̂⊗πB. Then

a ⊗ b =
∞
∑

j=1

aja ⊗ bjb

for all a ∈ A and b ∈ B. Since A ̂⊗πB is unital, Δ(A ̂⊗πB) �= ∅ and hence
Δ(A) and Δ(B) are both nonempty by Theorem 2.11.2. Choose ψ ∈ Δ(B)
and b ∈ B with ψ(b) = 1, and let φψ : A ̂⊗πB → A be the homomorphism of
Lemma 2.11.5. Then

a = φψ(a ⊗ b) = φψ

⎛

⎝

∞
∑

j=1

aja ⊗ bjb

⎞

⎠

=
∞
∑

j=1

φψ(aja ⊗ bjb) =
∞
∑

j=1

ψ(bjb)aja

=

⎛

⎝

∞
∑

j=1

ψ(bj)aj

⎞

⎠ a

for all a ∈ A. Thus
∑∞

j=1 ψ(bj)aj is an identity for A. Similarly, it is shown
that B is unital. �	
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To conclude this section, let A be a semisimple commutative Banach al-
gebra and G a locally compact Abelian group. Since L1-spaces do have the
approximation property, we could use Theorem 2.11.6 and Corollary 2.7.9
to deduce that L1(G, A) = L1(G) ̂⊗πA is semisimple. However, this can be
shown directly without appealing to Theorem 2.11.6 as follows.

Theorem 2.11.8. Let G be a locally compact Abelian group and A a semisim-
ple commutative Banach algebra. Then L1(G, A) = L1(G) ̂⊗πA is semisimple.

Proof. Let φ : L1(G) ̂⊗πA → L1(G, A) be the isometric isomorphism sat-
isfying φ(f ⊗ a)(x) = f(x)a for all f ∈ L1(G) and a ∈ A and almost all
x ∈ G (Proposition 1.5.4). For α ∈ ̂G, let ϕα be the corresponding element
of Δ(L1(G)) and recall that Δ(L1(G) ̂⊗πA) = Δ(L1(G)) × Δ(A) (Theorem
2.11.2). Let f ∈ L1(G), α ∈ ̂G, a ∈ A and ψ ∈ Δ(A). Then

(ϕα̂⊗πψ)(f ⊗ a) = ̂f(α)ψ(a) = ψ(a)
∫

G

f(x)α(x)dx

=
∫

G

α(x)ψ(f(x)a)dx

=
∫

G

α(x)ψ(φ(f ⊗ a)(x))dx

= ψ(φ(f ⊗ a))̂ (α).

By linearity and continuity, this implies

(ϕα̂⊗πψ)(u) = ψ̂(φ(u))(α)

for all u ∈ L1(G) ̂⊗πA, α ∈ ̂G and ψ ∈ Δ(A). Since L1(G) is semisimple, this
equation shows that if u ∈ L1(G) ̂⊗πA is such that û = 0, then ψ(φ(u)) = 0
for all ψ ∈ Δ(A). Thus φ(u) = 0 since A is semisimple and hence u = 0 as φ
is injective. �	

2.12 Exercises

Exercise 2.12.1. The following example shows that the Gleason–Kahane–
Zelazko theorem (Theorem 2.1.2) fails to hold for real Banach algebras. Let
A = CR([0, 1]) be the algebra of all real valued continuous functions on [0, 1]
with the supremum norm. Define ϕ : A → R by ϕ(f) =

∫ 1

0
f(t)dt. Show that

ϕ(f) �= 0 whenever f is invertible, but ϕ is not multiplicative.

Exercise 2.12.2. Find an example of a real commutative Banach algebra
with identity which does not admit a nonzero real multiplicative linear func-
tional.
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Exercise 2.12.3. Let V denote the Volterra integral operator on L2[0, 1] de-
fined by

V f(s) =
∫ s

0

f(t)dt, f ∈ L2[0, 1], s ∈ [0, 1],

and let A be the closed subalgebra of B(L2[0, 1]) generated by V . Show that
A has precisely one maximal ideal.

Exercise 2.12.4. For 1 ≤ p < ∞, consider the non-unital commutative Ba-
nach algebra lp(N). Identify the maximal modular ideals of lp(N). Show that
lp(N) has maximal ideals which are not modular.

Exercise 2.12.5. Let A be a non-unital commutative Banach algebra and
M a maximal ideal of A. Show that M is modular if and only if M has
codimension one and does not contain A2.

Exercise 2.12.6. Let A be the algebra of entire functions in the complex
plane endowed with the norm ‖f‖ = sup{|f(z)| : |z| = 1}. Then A is a non-
complete commutative normed algebra. Prove that A contains maximal ideals
of infinite codimension.

Exercise 2.12.7. Let A be the algebra of all continuously differentiable func-
tions f : [0, 1] → C with pointwise multiplication and the norm ‖f‖ =
‖f‖∞ + ‖f ′‖∞. Let

I = {f ∈ A : f(0) = f ′(0) = 0}.

Show that A/I is a two-dimensional algebra which has a one-dimensional
radical. Thus A is an example of a semisimple commutative Banach algebra
which admits a non-semisimple quotient.

Exercise 2.12.8. Find examples showing that Corollaries 2.1.10 and 2.1.11
are no longer true without assuming semisimplicity.

Exercise 2.12.9. Let A be a commutative Banach algebra and Γ : A →
Γ (A) ⊆ C0(Δ(A)) its Gelfand homomorphism. Show that Γ is a topological
isomorphism (if and) only if there exists c > 0 such that ‖a2‖ ≥ c ‖a‖2 for all
a ∈ A.

Exercise 2.12.10. Let A be a semisimple commutative Banach algebra with
norm ‖ · ‖, and let B be a subalgebra of A which is a Banach algebra with
some norm | · |. Show that there exists a constant c > 0 such that ‖x‖ ≤ c|x|
for all x ∈ B.

Exercise 2.12.11. Let A and B be commutative Banach algebras and A⊕B
their direct sum with the norm ‖(a, b)‖ = max(‖a‖, ‖b‖). Show that there is
a canonical homeomorphism between Δ(A ⊕ B) and the topological disjoint
union of Δ(A) and Δ(B).
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Exercise 2.12.12. Let A be a unital commutative Banach algebra, and let
I1 and I2 be nontrivial closed ideals of A such that A = I1 ⊕ I2. Show that
Δ(A) is not connected.

Exercise 2.12.13. Let A be a semisimple commutative Banach algebra and
̂A = {â : a ∈ A}. Let φ : Δ(A) → Δ(A) be a homeomorphism. We say that
φ is induced from a homomorphism h : A → A if φ(ϕ)(x) = ϕ(h(x)) for all
x ∈ A and ϕ ∈ Δ(A).

(i) Prove that φ is induced from a homomorphism h : A → A if and only
if f ∈ ̂A implies f ◦ φ ∈ ̂A.

(ii) Find an analogous condition on φ which is equivalent to φ being in-
duced from an automorphism of A.

Exercise 2.12.14. In Exercise 2.12.13, take A = l1(Z) and identify Δ(A)
with T. Conclude that a homeomorphism φ : T → T is induced from a homo-
morphism of A if and only if φ ∈ ̂A.

Exercise 2.12.15. Let A and B be commutative Banach algebras and let
h : A → B be a homomorphism with dense range. Show that

h∗ : Δ(B) → Δ(A), h∗(ψ)(a) = ψ(h(a)),

a ∈ A, ψ ∈ Δ(B), defines an injective continuous mapping from Δ(B) into
Δ(A). If B is unital, then h∗ maps Δ(B) homeomorphically onto h∗(Δ(B)).

Exercise 2.12.16. Construct examples of semisimple commutative Banach
algebras A and B and a homomorphism h : A → B with dense range such
that the corresponding mapping h∗ : Δ(B) → Δ(A) (see Exercise 2.12.15)

(i) is not surjective,
(ii) not a homeomorphism onto its range.

Exercise 2.12.17. Let X and Y be nonempty compact Hausdorff spaces and
φ : C(X) → C(Y ) a unital homomorphism, and let φ∗ : Δ(C(Y )) → Δ(C(X))
be the map ϕ → ϕ ◦ φ. Show

(i) φ∗ is injective if and only if φ is surjective.
(ii) φ∗ is surjective if and only if φ is injective.

Exercise 2.12.18. Let X be a compact Hausdorff space and let A be a uni-
form algebra on X . Let ϕ : A → C be a homomorphism. Show that there
exists a probability measure μ on X such that ϕ(f) =

∫

X
f(x)dμ(x) for all

f ∈ A.

Exercise 2.12.19. Let A and B be semisimple and unital commutative Ba-
nach algebras. Let φ be a linear map of A onto B. Prove that φ is an algebra
isomorphism between A and B if and only if σB(φ(x)) = σA(x) for all x ∈ A.
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Exercise 2.12.20. Let A ⊆ A1 ⊆ A2 be commutative Banach algebras with
norms ‖ · ‖, ‖ · ‖1 and ‖ · ‖2 respectively. Assume that A is dense in A1 and in
A2 in their respective norms and that Δ(A) = Δ(A2) (that is, every element
of Δ(A) is continuous with respect to ‖ · ‖2). Show that Δ(A1) = Δ(A2).

Exercise 2.12.21. Let A be a semisimple and faithful commutative Banach
algebra. For any T ∈ M(A), let fT denote the continuous function on Δ(A)
satisfying ̂Tx(ϕ) = fT (ϕ)x̂(ϕ) for all ϕ ∈ Δ(A) (Proposition 2.2.16). Show
that the mapping T → fT is a continuous isomorphism from M(A) onto the
subalgebra

B = {f ∈ Cb(Δ(A)) : f · x̂ ∈ ̂A for all x ∈ A}

of Cb(Δ(A)).

Exercise 2.12.22. Let A be a semisimple commutative Banach algebra, T :
A → A a bounded linear operator and T ∗ the adjoint of T . Prove that T ∈
M(A) if and only if for each ϕ ∈ Δ(A) there exists a constant c(ϕ) such that
T ∗(ϕ) = c(ϕ)ϕ.

Exercise 2.12.23. Let A be a commutative Banach algebra such that Δ(A)
is infinite. Prove that there exists x ∈ A such that σA(x) is infinite.
(Hint: Let ϕn ∈ Δ(A), n ∈ N, such that ϕn �= ϕm for n �= m. For m, n ∈ N,
n �= m, let

Vm,n = {x ∈ A : ϕm(x) �= ϕn(x)}

and show that Vm,n is dense in A. Conclude that ∩{Vm,n : m �= n} �= ∅).

Exercise 2.12.24. Consider the disc algebra A(D) and view D = Δ(A(D))
as a subset of A(D)∗. Show that the topology on D induced by the norm
topology of A(D)∗ coincides with the complex plane topology on D◦ and with
the discrete topology on T.
(Hint: For the first part of the assertion, use Schwarz’ lemma which states
that if f : D◦ → D is a holomorphic function vanishing at z0 ∈ D◦, then
|f(z)| ≤ |z − z0|/|1 − z z0| for all z ∈ D◦.)

Exercise 2.12.25. Let A be a closed subalgebra of C(D) satisfying the fol-
lowing two conditions:

(1) The function z → z belongs to A.
(2) For every f ∈ A, ‖f‖∞ = ‖f |T‖∞.

Then A ⊆ A(D). To prove this, proceed as follows.
(i) Apply Wermer’s maximality theorem (Theorem 2.5.15) to conclude

that A|T = {f |T : f ∈ A} is equal to either P (T) or C(T).
(ii) By (2), every g ∈ A|T extends uniquely to some g̃ ∈ A. Consider

the homomorphism g → g̃(0) from A|T to C to exclude the possibility that
A|T = C(T).

(iii) Show that if f ∈ A and g ∈ A(D) are such that f |T = g|T, then f = g.
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Exercise 2.12.26. Let A be a commutative Banach algebra with identity e.
Prove that the following two conditions are equivalent.

(i) For x, y ∈ A, exp x = exp y implies that x−y = (2kπi)e for some k ∈ Z.
(ii) Δ(A) is connected.

(Hint: Show that the equation expx = e has no nonzero solution in the radical
of A and that it has solutions different from (2kπi)e, k ∈ Z, if and only if Δ(A)
is not connected.)

Exercise 2.12.27. Let lp(N) be as in Exercise 1.6.9. Determine Δ(lp(N)).

Exercise 2.12.28. Let Lipα[0, 1] be the Banach algebra of Lipschitz functions
of order α (see Exercise 1.6.11). For t ∈ [0, 1], let ϕt(f) = f(t), f ∈ Lipα[0, 1].
Show that the map t → ϕt is a homeomorphism of [0, 1] onto Δ(Lipα[0, 1]).
(Hint: If f ∈ Lipα[0, 1] is such that f(t) �= 0 for all t ∈ [0, 1], then 1

f ∈
Lipα[0, 1].)

Exercise 2.12.29. Let γ be a continuous homomorphism of R into the mul-
tiplicative group C× of nonzero complex numbers.

(i) Show that γ is differentiable and satisfies the differential equation

γ′(t) = γ(0)γ(t), t ∈ R.

(Hint: There exists c > 0 such that
∫ c

0 γ(s)ds �= 0, and then

γ(t) =
(∫ c

0

γ(s)ds

)−1 ∫ c+t

0

γ(s)ds

for all t ∈ R.)
(ii) Deduce that there exists z ∈ C such that γ(t) = ezt for all t ∈ R.

Exercise 2.12.30. Let G be a compact Abelian group and let α and β be
distinct characters of G. Show the orthogonality relation

∫

G α(x)β(x)dx = 0.
(Hint: For γ ∈ ̂G \ {1G}, choose x0 ∈ G such that γ(x0) �= 1 and observe that
∫

G γ(x)dx = γ(x0)
∫

G γ(x)dx).

Exercise 2.12.31. Let G be a compact Abelian group with normalized Haar
measure and let 1 ≤ p < ∞. With convolution, Lp(G) is a commutative
Banach algebra. For χ ∈ ̂G and f ∈ Lp(G), let

ϕχ(f) = ̂f(χ) =
∫

G

f(x)χ(x)dx.

Show that the map χ → ϕχ is a bijection between ̂G and Δ(Lp(G)) and that
Δ(Lp(G)) is discrete.

Exercise 2.12.32. In Theorem 2.7.12 it was shown that, for a locally compact
Abelian group G, the Gelfand transform f → ̂f from L1(G) to C0( ̂G) is onto
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(equivalently, the norms f → ‖f‖1 and f → ‖ ̂f‖∞ are equivalent) only when
G is finite. For the real line, one can explicitly construct a sequence of functions
fn ∈ L1(R), n ∈ N, such that ‖fn‖1 = 1 for all n, whereas ‖̂fn‖∞ → 0 as
n → ∞. In fact, normalizing Lebesgue measure so that [0, 1] has measure one,
define fn by

fn(t) =
1√
π

exp(−(1 + ni)t2),

t ∈ R, and show that this sequence has the stated properties.
(Hint: Use the formula

∫

R

exp(−ist − zt2)dt =
(π

z

)1/2

exp
(

− s2

4z

)

,

which holds for all s ∈ R and all z ∈ C with Rez > 0.)

Exercise 2.12.33. Let f ∈ C(T) ⊆ L1(T). Show that the following condi-
tions are equivalent.

(i) f ∈ P (T).
(ii) There exists g ∈ A(D) such that g|T = f .
(iii) ̂f(−n) = 0 for all n ∈ N.

Exercise 2.12.34. Let μ denote Lebesgue measure on the unit interval [0,1]
and let L∞(μ) be the space of equivalence classes modulo sets of measure
zero of complex valued essentially bounded measurable functions on [0,1].
With the essential supremum norm, pointwise multiplication and f → f ,
L∞(μ) is a unital commutative C∗-algebra. Let Δ = Δ(L∞(μ)) and L∞(μ) →
C(Δ), f → ̂f the Gelfand isomorphism. Observe that ̂f →

∫ 1

0 f(t)dμ(t) is a
bounded linear functional of norm one on C(Δ). By the Riesz representation
theorem there is a regular probability measure μ̂ on Δ satisfying

∫

Δ

̂f(ϕ)dμ̂(ϕ) =
∫ 1

0

f(t)dμ(t)

for all f ∈ L∞(μ).
(i) Show that μ̂(U) > 0 for every nonempty open subset U of Δ.
(ii) Show that for every nonempty open subset U of Δ there exists fU ∈

L∞(μ) such that ̂fU = 1U μ̂-almost everywhere.

Exercise 2.12.35. Retain the setting and notation of Exercise 2.12.34. Prove
that Δ is extremally disconnected, that is, the closure of every open subset of
Δ is open.
(Hint: Let U be an open subset of Δ and f ∈ L∞(μ) such that ̂f = 1U μ̂-
almost everywhere. Deduce from continuity of ̂f that ̂f takes only the values
0 and 1.)
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Exercise 2.12.36. Let A be a commutative Banach ∗-algebra. Then A is
called symmetric if ϕ(x∗) = ϕ(x) for all x ∈ A and ϕ ∈ Δ(A). Prove that the
following two conditions are equivalent.

(i) A is symmetric.
(ii) −1 �∈ σA(x∗x) for every x ∈ A.

(Hint: Without loss of generality, assume that A has an identity e. For (ii) ⇒
(i), use (ii) to show that if x is a selfadjoint element of A and α and β are
real numbers with β �= 0, then (α + iβ)e − x is invertible.)

Exercise 2.12.37. Let D = {z ∈ C : |z| ≤ 1}, the closed unit disc, and
A = P (D). For f ∈ A, define f∗ by f∗(z) = f(z).

(i) Show that f → f∗ is an involution on A.
(ii) Does this involution turn A into a C∗-algebra?
(iii) Is σA(f∗f) ⊆ R for all f ∈ A?
(iv) Which ϕ ∈ Δ(A) satisfy ϕ(f∗f) ≥ 0 for all f ∈ A?
(v) Does there exist an involution f → ˜f on A such that ϕ( ˜f) = ϕ(f) for

all f ∈ A and ϕ ∈ Δ(A)?

Exercise 2.12.38. Let G be a locally compact Abelian group such that G �=
{e}. Construct a function f ∈ L1(G) such that ‖f∗ ∗ f‖ �= ‖f‖2, thereby
showing that ‖ · ‖1 fails to be a C∗-norm.
(Hint: In case G has at least three elements e, a and b, choose a compact
symmetric neighbourhood V of e with the property that the three sets V , aV
and bV are pairwise disjoint and consider the function f = 1V + i1aV + 1bV .)

Exercise 2.12.39. Let A be C∗-algebra with identity e. Then e is an extreme
point of the unit ball A1 = {a ∈ A : ‖a‖1 ≤ 1}. To prove this, proceed as
follows.

(i) Suppose that e = 1
2 (a + b), a, b ∈ A1. Show that there exist selfadjoint

elements x and y of A1 such that e = 1
2 (x + y) and xy = yx.

(ii) Let B be the closed subalgebra of A generated by x, y and e. Apply
Theorem 2.4.5 and show that x̂(ϕ) = ŷ(ϕ) for all ϕ ∈ Δ(B).

Exercise 2.12.40. Let Sn = {x ∈ Rn+1 : ‖x‖ = 1}, the unit sphere in Rn+1,
n ≥ 1. Use the Stone–Weierstrass theorem to show that C(Sn) admits a
system of n + 1 generators.
(Remark: Using cohomology theory, one can prove that C(Sn) cannot admit
a system of less than n + 1 generators.)

Exercise 2.12.41. Let X be a compact subset of C and suppose that C \
X has infinitely many connected components. Prove that R(X) cannot be
generated by finitely many rational functions.

Exercise 2.12.42. For 0 < r < R < ∞ let K(r, R) denote the compact
annulus

K(r, R) = {z ∈ C : r ≤ |z| ≤ R}.
Prove that the uniform algebra A(K(r, R)) is generated by the two functions
z → z and z → 1/z.
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Exercise 2.12.43. Let A be a commutative Banach algebra and let ϕ1, . . . , ϕn

be distinct elements of Δ(A). Show that the mapping

x → (ϕ1(x), . . . , ϕn(x))

maps A onto C
n.

Exercise 2.12.44. Let K be a compact subset of Cn, n ∈ N. Show that there
exist a unital commutative Banach algebra A and elements x1, . . . , xn of A
such that

K = σA(x1, . . . , xn).

Why does this not contradict Theorem 2.3.6?

Exercise 2.12.45. Let A be a commutative Banach algebra with identity e
and let x1, . . . , xn ∈ A. Let Λ denote the set of all λ = (λ1, . . . , λn) ∈ Cn with
the property that for any y1, . . . , yn ∈ A, the element

∑n
j=1 yj(λe− xj) is not

invertible in A. Prove that

Λ = σA(x1, . . . , xn).

(Hint: Let λ = (λ1, . . . , λn) ∈ Λ. To show that λ ∈ σA(x1, . . . , xn), observe
that the set of all elements

∑n
j=1 yj(λe − xj), yj ∈ A, either equals A or is a

proper ideal of A and hence is contained in a maximal ideal.)

Exercise 2.12.46. Prove that the two-dimensional torus

T = {(z, w) ∈ C
2 : |z| = |w| = 1}

in C2 has as its polynomially convex hull the 4-dimensional bicylinder D×D.
(Remark: The question of whether there is any relation between the topolog-
ical dimension of a compact subset of Cn and the topological dimension of its
polynomially convex hull has been a matter of some interest.)

Exercise 2.12.47. Consider the following subset

Y =
{

(z, w) ∈ C
2 : z �= 0, w =

1
z

}

of C2. Show that for every compact subset X of Y , the polynomially convex
hull ̂Xp of X is contained in Y .

Exercise 2.12.48. In Proposition 2.8.8, consider the following choices of w:
(i) w(n) = 2n for all n ∈ Z;
(ii) w(n) = 2n for n ≥ 0 and w(n) = 1 for n < 0;
(iii) w(n) = 1 + 2n for all n ∈ Z;
(iv) w(n) = 1 + 2n for n ≥ 0 and w(n) = 1 for n < 0.

For which of these choices is K(R−, R+) a circle? For which of them is ̂l1(Z, w)
closed under complex conjugation?
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Exercise 2.12.49. Determine the structure space of the Beurling algebra
l1(Z, ω) for the following weights ω:

(i) ω(n) = e|n|, n ∈ Z.
(ii) ωα(n) = (1 + |n|)α, n ∈ Z, 0 < α < ∞.

Exercise 2.12.50. Let ω be a continuous weight function on R+. Then the
limit limt→∞ ω(t)1/t exists and is equal to ρ = inf{ω(t)1/t : t > 0}. Suppose
that ρ > 0 and let

S = {z ∈ C : Rez ≥ − ln ρ}.
The purpose of this exercise is to determine, by analogy with Beurling alge-
bras on R (Proposition 2.8.7), the structure space of the convolution algebra
L1(R+, ω).

(i) For z ∈ S, show that

ϕz(f) =
∫ ∞

0

f(t)e−ztdt, f ∈ L1(R+, ω),

defines an element of Δ(L1(R+, ω)).
(ii) Prove that every element of Δ(L1(R+, ω)) is of the form ϕz for some

z ∈ S.
(iii) Deduce that L1(R+, ω) is semisimple.
(iv) Show that the map z → ϕz is a homeomorphism from the halfplane

S onto Δ(L1(R+, ω)).

Exercise 2.12.51. Let ω and ρ be as in the preceding exercise and assume
that ρ = 0. Show that then L1(R+, ω) is radical. An example of such a radical
weight is ω(t) = exp(−t2), t ∈ R+.

Exercise 2.12.52. Let T be the multiplicative group of complex numbers of
absolute value one with normalized Haar measure. Recall that the Fourier
transform of f ∈ C(T) on ̂T = Z is defined by ̂f(n) =

∫

T
f(z)z−ndz, n ∈ Z.

Prove that f → ̂f furnishes an isometric isomorphism of the Fourier algebra
A(T) to l1(Z).

Exercise 2.12.53. Show that the Fourier algebra A(Z) of the group of inte-
gers is isometrically isomorphic to L1(T).

Exercise 2.12.54. Let G be a locally compact group and A(G) the Fourier
algebra of G as studied in Section 2.9. Exploit Lemmas 2.9.3 and 2.9.5 (with
K = {e}) to establish the existence of a net (uα)α in A(G) with the following
properties:

(1) ‖uα‖A(G) = uα(e) = 1 for all α;
(2) ‖vuα‖A(G) → 0 for every v ∈ A(G) with v(e) = 0.

Exercise 2.12.55. Let G be a noncompact locally compact group. Show that
there exists a bounded continuous function on G which fails to be uniformly
continuous (and hence is not almost periodic).
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Exercise 2.12.56. Let G be a locally compact group and

N = {x ∈ G : f(x) = f(e) for all f ∈ AP (G)}.

Using only the fact that f ∈ AP (G) implies that LaRbf ∈ AP (G) for all
a, b ∈ G, give a direct proof that N is a normal subgroup of G and that, for
x, y ∈ G, f(x) = f(y) for all f ∈ AP (G) if and only if y−1x ∈ N .

Exercise 2.12.57. Let G be a locally compact Abelian group and let P :
L∞(G) → L∞(G) be a norm-bounded projection such that P (Lxf) =
Lx(P (f)) for all f ∈ L∞(G) and x ∈ G. Show that P maps AP (G) into
AP (G) and that there exists a finite measure μ on the Bohr compactification
b(G) such that P (f) = f ∗ μ for all f ∈ AP (G) = C(b(G)).

Exercise 2.12.58. Let A be a commutative Banach algebra and let D
be a continuous derivation of A. The Singer–Wermer theorem states that
Dx ∈ rad(A) for every x ∈ A. In particular, there are no nonzero continuous
derivations on a semisimple commutative Banach algebra.

Prove the Singer–Wermer theorem as follows. For ϕ ∈ Δ(A) and x ∈
A, consider the function z → ϕ(exp(zD)x). Show that this is a bounded
holomorphic function in the entire complex plane (note that x → ϕ(exp(zD)x)
is a multiplicative linear functional on A). Conclude that ϕ(Dx) = 0.

Let A be a commutative Banach algebra and ϕ ∈ Δ(A). A linear functional
D on A is called a point derivation at ϕ if D(ab) = ϕ(a)D(b) + ϕ(b)D(a) for
all a, b ∈ A.

Exercise 2.12.59. Show that there is a nonzero continuous point derivation
on Lipα[0, 1] at every t ∈ [0, 1].
(Hint: Let (tn)n ⊆ [0, 1] be a sequence such that tn → t and tn �= t for all n.
Define ln ∈ (Lipα[0, 1])∗ by

ln(f) =
f(tn) − f(t)
|tn − t|α ,

and let l be a w∗-accumulation point of the sequence (ln)n in (Lipα[0, 1])∗.)

Exercise 2.12.60. Let t ∈ [0, 1] and let I and J be the closed ideals in Cn[0, 1]
defined by

I = {f ∈ Cn[0, 1] : f(t) = 0} and J = {f ∈ Cn[0, 1] : f(t) = f ′(t) = 0}.

It follows from Taylor’s formula that I2 is dense in J . Let D be a continuous
point derivation of Cn[0, 1] at t, that is,

D(fg) = f(t)D(g) + g(t)D(f)

for all f, g ∈ Cn[0, 1]. Show that D(J) = {0} and hence D is of the form
D(f) = αf(t) + βf ′(t) for some α, β ∈ C. Conclude that D(f) = βf ′(t) for
all f ∈ Cn[0, 1].
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Exercise 2.12.61. Let A ⊆ C(X) and B ⊆ C(Y ) be uniform algebras. Let

A ⊗u B = {f ∈ C(X × Y ) : f(·, y) ∈ A for all y ∈ Y

and f(x, ·) ∈ B for all x ∈ X}.

Show that A⊗u B is a uniform algebra on X ×Y and that Δ(A⊗u B) can be
canonically identified with Δ(A)×Δ(B). A⊗u B is called the uniform tensor
product (slice product) of A and B.

Exercise 2.12.62. Let A and B be commutative Banach algebras such that
A is semisimple and B is finite dimensional. Prove, without using the fact
that B has the approximation property, that A ̂⊗πB is semisimple.
(Hint: Let Δ(B) = {ψ1, . . . , ψm} and choose bj ∈ ∩{kerψk : k �= j} such that
ψj(bj) = 1. Then b1, . . . , bm form a basis of B.)

Exercise 2.12.63. Let G and H be discrete Abelian groups with dual groups
̂G and ̂H . Prove that the Gelfand homomorphism maps l1(G × H) into the
projective tensor product C( ̂G) ̂⊗πC( ̂H).

2.13 Notes and references

Theorem 2.1.2, characterizing multiplicative linear functionals on (not nec-
essarily commutative) Banach algebras, has been established independently
by Gleason [44] and Kahane and Zelazko [64] using analytic tools. The fairly
elementary algebraic proof given here was found by Roitman and Sternfeld
[109] and the preliminary Lemma 2.1.1 is due to Zelazko [141]. There exist an
extensive theory and a wealth of interesting examples of radical commutative
Banach algebras. These play a fundamental role in the investigation of auto-
matic continuity problems (see [25] for a comprehensive account). We have
confined ourselves to including just two illustrative examples. The continu-
ity results Corollaries 2.1.10 and 2.1.12 and the uniqueness of norm property,
Corollary 2.1.11, trace back to Rickart [106]. Corollaries 2.1.11 and 2.1.12 hold
as well for non-commutative semisimple Banach algebras. This follows from
Johnson’s theorem [61] stating that if A and B are Banach algebras with B
semisimple, then every homomorphism from A onto B is continuous. For a
short proof of Johnson’s theorem, see [101].

The Gelfand representation is the pioneering work of Gelfand. All the basic
results presented in Section 2.2 appeared first in [38] and [40] and are nowadays
part of any book on Banach algebras. Also, the examples and immediate
applications of Gelfand’s theory given in Section 2.2 are standard.

Many commutative Banach algebras are generated by finitely many ele-
ments. If a1, . . . , an generate A, then Δ(A) is canonically homeomorphic to
the joint spectrum of a1, . . . , an, which is a compact subset of Cn. It is there-
fore an important issue to identify the compact subsets of Cn arising in this
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manner as joint spectra. Theorem 2.3.6, which states that these are exactly
the polynomial convex subsets of Cn, was shown by Shilov, as was Theorem
2.3.7, which says that a compact subset of C is polynomially convex if and
only if its complement is connected [121, 123]. The problem of a topological
characterisation of polynomial convex subsets of Cn for n ≥ 2 is open. For
more details and partial results we refer the reader to [126].

C∗-algebras were first studied by Gelfand and Naimark in their fundamen-
tal paper [39]. Theorem 2.4.5, which is usually referred to as the commutative
Gelfand-Naimark theorem and which identifies the commutative C∗-algebras
as precisely the uniform algebras C0(X), where X is a locally compact Haus-
dorff space, as well as the continuous functional calculus (Theorem 2.4.9) can
be found in [39]. Let X be a completely regular topological space. The intro-
duction of the Stone–Čech compactification β(X) as the structure space of
the commutative C∗-algebra Cb(X) (Theorem 2.4.12) is for instance given in
[126] and [36].

There is a vast literature on uniform algebras, in particular on P (X),
R(X) and A(X), where X is a compact subset of Cn. We refer the reader to
the monographs by Stout [126], Gamelin [36] and Leibowitz [78] concerning
much more detailed material. Equality to hold at any position in the chain of
inclusions P (X) ⊆ R(X) ⊆ A(X) ⊆ C(X) can be interpreted as a result in
qualitative approximation theory and is therefore of interest beyond Banach
algebra theory. Samples of such results are Theorem 2.5.8 and Theorem 2.5.12,
the former being a major step towards Mergelyan’s theorem which asserts that
if X is a compact subset of C, then P (X) = A(X) precisely when C \ X is
connected. Except for n = 1, there are no topological characterisations of
those compact subsets of Cn which arise as structure spaces of algebras P (X)
and R(X) (Theorem 2.5.7). Examples of compact subsets X of C with empty
interior for which R(X) �= C(X) have been given by several authors. The
example we have presented in Section 2.5 is basically due to Mergelyan [87],
somewhat modified by McKissick [85] (see also [73]). The maximality theorem,
Theorem 2.5.15, was found by Wermer [136]. Lemma 2.5.14 and the simple
proof of Theorem 2.5.15 based on it was discovered by Cohen [22]. The related
result displayed in Exercise 2.12.25 was shown by Rudin [112].

Theorem 2.6.6 is due to Arens [4] and can also be found in [126] and [36].
It is worth pointing out that when X is a compact subset of C

n for some
n > 1, then Δ(A(X)) need not be homeomorphic with a subset of Cn [126].

The convolution algebras L1(G) of locally compact Abelian groups, which
are the central object of study in commutative harmonic analysis, form a large
and extremely important class of commutative Banach algebras. The fact that
the structure space of L1(G) identifies canonically with the dual group ̂G of G,
endowed with the topology of uniform convergence of characters on compact
subsets of G (Theorems 2.7.2 and 2.7.5) is classical. We refer to [54], [105],
and [113]. Note that for G the group of real numbers, the Gelfand transform
is nothing but the Fourier transform. To show semisimplicity of L1(G), we
have exploited the left regular representation of L1(G) on L2(G) and the
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semisimplicity of commutative C∗-algebras. A highly non-trivial fact is that
the Gelfand homomorphism of L1(G) into C0( ̂G) is surjective only when G
is finite (Theorem 2.7.12). There are approaches to Theorem 2.7.12 different
from the one chosen here, either using the Pontryagin duality theorem or some
other tools none of which we want to employ in this context (see [28, Theorem
B.4.6], [34], and [45]).

Beurling algebras behave in many respects similarly to L1-algebras. For
instance, Theorems 2.8.2 and 2.8.5 exposing the Gelfand representation of
L1(G, ω), parallel Theorems 2.7.3 and 2.7.5. Some technical complications,
however, arise from the facts that weights are only locally bounded and that
the set of ω-bounded generalized characters is less handy than the dual group
̂G. The concrete realizations of Δ(L1(R, ω)) and Δ(l1(Z, ω)) by means of a
vertical strip and an annulus in the complex plane, respectively, are classical
[41, Chapter III]. The elementary proof of semisimplicity of L1(G, ω) given
here (Theorem 2.8.10) is due to Bhatt and Dedania [16].

The Fourier algebra A(G) of a locally compact group G was introduced
by Eymard [32] as the predual of the group von Neumann algebra V N(G).
The realization of A(G) which we have taken as the definition and all the
basic results, such as Theorem 2.9.4 and Lemma 2.9.5, are contained in [32].
Our presentation follows the one in [25]. Eymard has also shown that A(G)
is isometrically isomorphic to L1( ̂G) when G is Abelian. This is one of the
reasons why the large class of Fourier algebras currently attracts a lot of at-
tention within the theory of commutative Banach algebras. A result of Leptin
[79] says that A(G) has a bounded approximate identity if and only if G is a
so-called amenable group. One of the many open questions is whether A(G)
always possesses an (unbounded) approximate identity.

The Bohr or almost periodic compactification b(G) of a locally compact
Abelian group G originated from a paper by Bohr [18] who was the first
to study almost periodic functions on the real line. Discussions of the subject
under various different aspects can be found in the monographs by Hewitt and
Ross [54, 55], Loomis [81], and Weil [134]. In particular, the fairly elementary
proof showing that one-sided almost periodic functions are necessarily two-
sided almost periodic is due to Loomis. In Section 2.10 we have established
the existence and properties of b(G) by applying Gelfand’s theory to the
commutative C∗-algebra of almost periodic functions.

Tensor products of commutative Banach algebras have been investigated
by several authors. Theorem 2.11.2, which canonically identifies Δ(Â⊗γB)
with the product space Δ(A)×Δ(B), was independently shown by Tomiyama
[128] and Gelbaum [37], following earlier work of Hausner [48, 49] and G.P.
Johnson [62] on L1(G, A) and C(X, A). The more subtle question of when
the projective tensor product A ̂⊗πB is semisimple was addressed in [128],
where Theorem 2.11.6 can be found. The fact that condition (ii) of Theorem
2.11.6 need not be satisfied and consequently the projective tensor product
of two semisimple commutative Banach algebras need not be semisimple, was
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discovered by Milne [89] by exploiting the existence of Banach spaces which
don’t share the approximation property [31]. Note in this context that Theo-
rem 2.11.6 contradicts Corollary 1 of [77].



3

Functional Calculus, Shilov Boundary, and
Applications

Let A be a commutative Banach algebra. This chapter focuses on several im-
portant problems which evolve from the Gelfand representation theory and
concern the structure space Δ(A) and the structure of A itself. The most
significant new tool to be used in this context are so-called holomorphic func-
tional calculi for Banach algebra elements. The single-variable holomorphic
functional calculus associates with a complex-valued function f , which is de-
fined and holomorphic in a neighbourhood of the spectrum of an element x of
A, an element f(x) of A. This calculus and the properties of the assignment
f → f(x) are developed in Section 3.1. There is a generalisation to several-
variable holomorphic functions a weaker form of which we discuss at the end
of Section 3.1.

A first application of the single-variable functional calculus concerns the
topological group G(A) of invertible elements of a unital commutative Banach
algebra A, especially the description of its connected component of the identity
(Section 3.2). A very intricate problem is the identification of those elements
of Δ(A) that extend to elements of Δ(B) whenever B is any commutative
Banach algebra containing A as a closed subalgebra. This question is dealt
with at several places in this chapter and it has been the motivation for Shilov
to introduce the boundary ∂(A) carrying his name. The Shilov boundary
is the smallest closed subset of Δ(A) on which every function |â|, a ∈ A,
attains its maximum (Section 3.3). Not only does the Shilov boundary play
an important role in the extension problem, it is also linked to the concept of
(joint) topological zero divisors which we study thoroughly in Section 3.4.

The structure space of a unital commutative Banach algebra is compact.
The converse, a deep fact, holds for semisimple algebras. Although some spe-
cial cases are easier to obtain, the decisive result is based on Shilov’s idem-
potent theorem, the proof of which requires (at least so far) the multivari-
able holomorphic functional calculus. Shilov’s idempotent theorem states that
the characteristic function of a compact open subset of Δ(A) is the Gelfand
transform of an idempotent in A. This theorem is unquestionably one of the

E. Kaniuth, A Course in Commutative Banach Algebras, Graduate Texts in Mathematics,

DOI 10.1007/978-0-387-72476-8 3, c© Springer Science+Business Media, LLC 2009
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highlights in commutative Banach algebra theory and is presented in Section
3.5, followed by the proof that a semisimple commutative Banach algebra
with compact structure space has to be unital. We also study the impact of
Shilov’s idempotent theorem on decomposing A into a direct sum of ideals.

3.1 The holomorphic functional calculus

In Theorem 2.4.9 we have described a continuous functional calculus for ele-
ments of a commutative C∗-algebra A. In this section we replace A by an
arbitrary unital Banach algebra and develop the so-called holomorphic func-
tional calculus which provides an efficient method to construct from a given
algebra element new elements with specified properties.

Let A be a unital Banach algebra and x ∈ A. Suppose that U is an open set
containing σA(x), and denote by R(U) the set of all rational functions on U .
That is, f ∈ R(U) if and only if f = (p/q)|U , where p and q are polynomials
with q(z) �= 0 for all z ∈ U . Since σA(q(x)) = q(σA(x)) (Lemma 1.2.10),
we have that 0 /∈ σA(q(x)) and therefore q(x) is invertible in A. We define
f(x) ∈ A by

f(x) = p(x)q(x)−1.

As U is a nonempty open set, the representation p/q of f is unique apart from
common factors of numerator and denominator. Moreover, polynomials in x
and the inverses of such polynomials commute with each other. It follows that
f(x) is independent of the choice of p and q. Let

R(x) =
⋃

{R(U) : U open, U ⊇ σA(x)}.

Then R(x) is an algebra and f(x) ∈ A is well defined for every f ∈ R(x).
The proof of the following lemma, which is left to the reader as an exercise, is
straightforward using Lemma 1.2.10 and the fact that ϕ(q(x)−1) = 1/ϕ(q(x))
for all ϕ ∈ Δ(A).

Lemma 3.1.1. The mapping f → f(x) is a homomorphism from R(x) into A
and satisfies ϕ(f(x)) = f(ϕ(x)) for all ϕ ∈ Δ(A) and σA(f(x)) = f(σA(x)).

For an open subset U of C let H(U) denote the algebra of all holomorphic
functions on U . For x ∈ A, let H(x) be the algebra of all functions that are
holomorphic in some neighbourhood of σA(x); that is,

H(x) =
⋃

{H(U) : U open, U ⊇ σA(x)}.

With pointwise operations, H(x) is an algebra. We wish to extend the homo-
morphism from R(x) into A to a homomorphism from H(x) into A. Clearly,
in what follows we need some basic tools from one variable complex analysis.
Proofs of the following two lemmas can, for instance, be found in [23, Chap-
ter VIII, Propositions 1.1 and 1.7]. In the sequel, for a rectifiable closed curve
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γ : [a, b] → C and z ∈ C \ γ[a, b], w(γ, z) denotes the winding number of γ
relative to the point z.

Lemma 3.1.2. Let U be an open subset of C and K a compact subset of U .
Then there are closed, piecewise smooth curves γ1, . . . , γm in U \K such that
for any holomorphic function f on U and z ∈ K,

f(z) =
1

2πi

m
∑

j=1

∫

γj

f(w)
w − z

dw.

In particular,
∑m

j=1 w(γj , z) = 1.

Lemma 3.1.3. If f : U → C is a holomorphic function, then for every com-
pact subset K of U and ε > 0 there exists a rational function r, the poles of
which are contained in C \ K, such that

‖f |K − r|K‖∞ ≤ ε.

Remark 3.1.4. Let A be a unital Banach algebra, γ : [a, b] → C a rectifiable
curve, and F : γ[a, b] → A a continuous mapping. For any partition

Z = {a = t0 < t1 < . . . < tn = b}

of [a, b] let δ(Z) = max{tj − tj−1 : 1 ≤ j ≤ n}. Now, using that F is uniformly
continuous, precisely the same arguments as those showing the existence of
the Riemann integral along such a curve, in the present situation yield that
the limit

lim
δ(Z)→0

n
∑

j=1

(γ(tj) − γ(tj−1))F (γ(tj))

exists in A. This element in A is denoted
∫

γ F (z)dz. It is immediate from the
definition that

ϕ

⎛

⎝

∫

γ

F (z)dz

⎞

⎠ =
∫

γ

ϕ(F (z))dz

for every ϕ ∈ A∗. Conversely, by the Hahn–Banach theorem,
∫

γ F (z)dz is
uniquely determined by this equation. Moreover, for each x ∈ A,

x ·
∫

γ

F (z)dz =
∫

γ

xF (z)dz.

In fact, denoting by Lx : A → A the mapping y → xy, we have ϕ ◦ Lx ∈ A∗

for every ϕ ∈ A∗ and hence
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ϕ

⎛

⎝x

∫

γ

F (z)dz

⎞

⎠ = ϕ ◦ Lx

⎛

⎝

∫

γ

F (z)dz

⎞

⎠

=
∫

γ

ϕ ◦ Lx(F (z))dz =
∫

γ

ϕ(xF (z))dz

= ϕ

⎛

⎝

∫

γ

xF (z)dz

⎞

⎠ .

Proposition 3.1.5. Let A be a Banach algebra with identity e, x ∈ A, and U
an open neighbourhood of σA(x). Suppose that γ1, . . . , γn are closed, piecewise
smooth curves in U \ σA(x) having the properties of Lemma 3.1.2. Then for
any rational function f on U ,

f(x) =
1

2πi

n
∑

k=1

∫

γk

f(z)(ze − x)−1dz.

Proof. First, we show that

1
2πi

n
∑

k=1

∫

γk

(ze − x)−1dz = e.

For that, by the Hahn–Banach theorem, it suffices to verify that

ϕ(e) = ϕ

(

1
2πi

n
∑

k=1

∫

γk

(ze − x)−1dz

)

for all ϕ ∈ A∗. Thus, fix ϕ ∈ A∗ and define a function g on C \ σA(x) by

g(z) = ϕ((ze − x)−1).

Then g is holomorphic (compare the proof of Theorem 1.2.8), and by Remark
3.1.4,

ϕ

(

1
2πi

n
∑

k=1

∫

γk

(ze − x)−1dz

)

=
1

2πi

n
∑

k=1

∫

γk

ϕ((ze − x)−1)dz

=
1

2πi

n
∑

k=1

∫

γk

g(z)dz.

Choose R > ‖x‖, and let γ(t) = Re2πit, t ∈ [0, 1], and let γ−1 denote the
inverse of the curve γ. Then w(γ−1, z) = −1 for every z ∈ σA(x). Applying
Lemma 3.1.2 with f = 1, we get

∑n
k=1 w(γk, z) = 0 for all z ∈ C\U = σA(x).
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A variant of Cauchy’s integral formula (see [23, p. 206 and p. 220]), applied
to C \ σA(x), the holomorphic function g, and the curves γ, γ1, . . . , γn, now
yields

n
∑

k=1

∫

γk

g(z)dz =
∫

γ

g(z)dz.

On the other hand, for z ∈ γ[0, 1],

(ze − x)−1 =
1
z

(

e − 1
z
x

)−1

=
∞
∑

j=0

z−(j+1)xj ,

the series being uniformly convergent on γ[0, 1]. Because
∫

γ
z−1dz = 2πi and

∫

γ
zmdz = 0 for m ∈ Z, m �= −1, it follows that

∫

γ

g(z)dz =
∫

γ

ϕ

( ∞
∑

j=0

z−(j+1)xj

)

dz

=
∫

γ

∞
∑

j=0

z−(j+1)ϕ(xj)dz

=
∞
∑

j=0

ϕ(xj)
∫

γ

z−(j+1)dz

= 2πiϕ(e).

Combining the above equations we obtain

ϕ(e) =
1

2πi

∫

γ

g(z)dz =
1

2πi

n
∑

k=1

∫

γk

g(z)dz = ϕ

(

1
2πi

n
∑

k=1

∫

γk

(ze − x)−1dz

)

.

Now, let f(z) = p(z)/q(z), z ∈ U , where p and q are polynomials and q is
nonzero on U . Let, say,

p(z) =
s
∑

ν=0

aνzν and q(z) =
t
∑

μ=0

bμzμ.

Then, since p(x) and q(x) commute,

p(z)q(x) − q(z)p(x) = (p(z)e − p(x))q(x) − (q(z)e − q(x))p(x)

=
( s
∑

ν=0

aν(zνe − xν)
)

q(x) −
( t
∑

μ=0

bμ(zμe − xμ)
)

p(x)

= (ze − x)
(

p1(z, x)q(x) − p2(z, x)p(x)
)

,
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where p1 and p2 are polynomials in two variables. Hence

(f(z)e − f(x))(ze − x)−1 = (p(z)q(x) − q(z)p(x))q(z)−1q(x)−1(ze − x)−1

= q(z)−1q(x)−1

(

p1(z, x)q(x) − p2(z, x)p(x)
)

.

Therefore, there exist elements a1, . . . , am of A and rational functions g1, . . . ,
gm defined on U such that

(f(z)e − f(x))(ze − x)−1 =
m
∑

j=1

gj(z)aj .

Since
∫

γk
gj(z)dz = 0 for all j and k, it follows from the first part of the proof

that

1
2πi

n
∑

k=1

∫

γk

f(z)(ze − x)−1dz =
1

2πi

n
∑

k=1

∫

γk

(

f(z)e − f(x)
)

(ze − x)−1dz

+
1

2πi

n
∑

k=1

∫

γk

f(x)(ze − x)−1dz

=
1

2πi

n
∑

k=1

( m
∑

j=1

∫

γk

gj(z)dz

)

ak

+ f(x)
1

2πi

n
∑

k=1

∫

γk

(ze − x)−1dz

= f(x),

as was to be shown. �	
We intend to define, for f ∈ H(x), an element f(x) of A by setting

f(x) =
1

2πi

n
∑

k=1

∫

γk

f(z)(ze − x)−1dz,

where γ1, . . . , γn are as in Lemma 3.1.2. For this definition to make sense, we
have to verify that it does not depend on the choice of the curves involved.
Once this has been done, Lemma 3.1.5 shows that this definition of f(x)
extends the one for rational functions f .

Lemma 3.1.6. Let U be an open neighbourhood of σA(x) and let f be a holo-
morphic function on U . Moreover, let γ1, . . . , γn and δ1, . . . , δm be systems of
closed, piecewise smooth curves in U \ σA(x) with the properties of Lemma
3.1.2. Then

n
∑

k=1

∫

γk

f(z)(ze − x)−1dz =
m
∑

j=1

∫

δ

f(z)(ze − x)−1dz.
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Proof. Let Ck and Dj denote the trace of γk and δj, respectively, and set

K =
( n
⋃

k=1

Ck

)

∪
( m
⋃

j=1

Dj

)

.

Notice that, because the function z → ‖(ze−x)−1‖ is continuous on C\σA(x)
and because K is compact and K ∩ σA(x) = ∅,

M =
( n
∑

k=1

L(γk) +
m
∑

j=1

L(δj)
)

sup
z∈K

‖(ze − x)−1‖ < ∞.

Here, L(γ) of course denotes the length of a rectifiable curve γ. By Lemma
3.1.3 there exist rational functions fn, n ∈ N, having poles outside K ∪ σA(x)
such that fn(z) → f(z) uniformly on K. Using Lemma 3.1.5, we can now
estimate the norm of the element

a =
n
∑

k=1

∫

γk

f(z)(ze − x)−1 dz −
m
∑

j=1

∫

δj

f(z)(ze − x)−1 dz

of A as follows:

‖a‖ ≤
∥

∥

∥

∥

∥

2πifn(x) −
n
∑

k=1

∫

γk

f(z)(ze − x)−1dz

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

2πifn(x) −
m
∑

j=1

∫

δj

f(z)(ze − x)−1dz

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n
∑

k=1

∫

γk

[fn(z) − f(z)](ze − x)−1dz

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

m
∑

j=1

∫

δj

[fn(z) − f(z)](ze − x)−1dz

∥

∥

∥

∥

∥

≤ M · sup
z∈K

|fn(z) − f(z)|.

Since the sequence (fn)n converges to f uniformly on K, the statement of the
lemma follows. �	

Definition 3.1.7. Let A be a unital Banach algebra. For x ∈ A and f ∈ H(x)
we define f(x) ∈ A as follows. Suppose that f is a holomorphic function on
the open set U containing σA(x), and choose closed, piecewise smooth curves
γ1, . . . , γn in U \ σA(x) with the properties of Lemma 3.1.2. Then, define
f(x) ∈ A by
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f(x) =
1

2πi

n
∑

k=1

∫

γk

f(z)(ze − x)−1dz.

It follows from Lemma 3.1.6 that this definition does not depend on the
choice of U and of the curves γ1, . . . , γn. Also, by Lemma 3.1.5, it ex-
tends the definition of f(x) for rational functions f . The set of mappings
H(x) → A, f → f(x), x ∈ A, is referred to as the single-variable holomorphic
functional calculus.

The basic properties of the holomorphic functional calculus are listed in
the next theorem.

Theorem 3.1.8. Let A be a commutative unital Banach algebra. For x ∈ A
the following assertions hold.

(i) f → f(x) is a homomorphism from H(x) into A.
(ii) If f is an entire function and f(z) =

∑∞
k=0 akzk, then

f(x) =
∞
∑

k=0

akxk,

the series being absolutely convergent.
(iii) Suppose that f and fn, n ∈ N, are holomorphic functions on some open

set U containing σA(x) and that fn converges uniformly to f on every
compact subset of U . Then

‖fn(x) − f(x)‖ → 0.

(iv) For f ∈ H(x) we have ϕ(f(x)) = f(ϕ(x)) for all ϕ ∈ Δ(A), and hence

σA(f(x)) = f(σA(x)).

Proof. (i) Recall first that the definition of f(x) for f ∈ H(x) does not depend
on the choice of curves γ1, . . . , γn in U \ σA(x) as long as these have the
properties in Lemma 3.1.2. Moreover, if γ is any rectifiable curve with image
Γ , then the mapping g →

∫

γ g(z)dz from C(Γ, A) into A is linear. These two
facts at once imply that the mapping f → f(x) is linear.

To verify that this mapping is multiplicative, let f and g be holomorphic on
some open neighbourhood U of σA(x) and choose curves γ1, . . . , γm : [0, 1] →
U \ σA(x) as in Lemma 3.1.2, and let Γj = γj [0, 1], 1 ≤ j ≤ m. Then there
are sequences (fn)n and (gn)n of rational functions, each of which has its
poles outside of σA(x) ∪

(
⋃m

j=1 Γj) such that fn → f and gn → g uniformly
on

⋃m
j=1 Γj . It follows that fngn → fg uniformly on

⋃∞
j=1 Γj , and since the

mapping r → r(x) from R(x) into A is a homomorphism, we conclude that

‖f(x)g(x) − (fg)(x)‖ ≤ ‖f(x) − fn(x)‖ · ‖g(x)‖
+ ‖fn(x)‖ · ‖g(x) − gn(x)‖
+ ‖(fngn)(x) − (fg)(x)‖,



3.1 The holomorphic functional calculus 147

which converges to 0 as n → ∞.
(ii) Let R > ‖x‖ and γ(t) = Re2πit, t ∈ [0, 1]. Then γ has the properties of

Lemma 3.1.2, and the series
∑∞

k=0 z−(k+1)xk converges uniformly on γ[0, 1].
This implies

f(x) =
1

2πi

∫

γ

f(z)(ze − x)−1dz

=
∞
∑

k=0

1
2πi

∫

γ

f(z)
zk+1

xkdz =
∞
∑

k=0

f (k)(0)
k!

xk

=
∞
∑

k=0

akxk.

(iii) follows from the estimate
∥

∥

∥

∥

∫

γ

g(z)(ze − x)−1dz

∥

∥

∥

∥

≤ L(γ)
∥

∥g|γ[0,1]

∥

∥ · sup
z∈γ[0,1]

‖(ze − x)−1‖.

(iv) For ϕ ∈ Δ(A) and z ∈ C \ σA(x),

1 = ϕ((ze − x)(ze − x)−1) = (z − ϕ(x))ϕ((ze − x)−1).

Thus ϕ((ze − x)−1) = (z − ϕ(x))−1, and since Δ(A) ⊆ A∗, we get

ϕ(f(x)) =
1

2πi

n
∑

k=1

∫

γk

ϕ(f(z)(ze − x)−1)dz

=
1

2πi

n
∑

k=1

∫

γk

f(z)(z − ϕ(x))−1dz

= f(ϕ(x)).

Finally, this equation yields that σA(f(x)) = ̂f(x)(Δ(A)) = f(x̂(Δ(A))) =
f(σA(x)) . �	

Suppose A is a unital commutative C∗-algebra. Then, for each x ∈ A, we
have two functional calculi of A, the holomorphic functional calculus H(x) →
A and the continuous functional calculus C(σA(x)) → A (Theorem 2.4.9). It is
worth pointing out that these two functional calculi coincide in the following
sense. If f ∈ H(x), then f(x) = (f |σA(x))(x). Indeed, this follows because
Δ(A) separates the elements of A and

ϕ(f(x)) = f(ϕ(x)) = (f |σA(x))(ϕ(x)) = ϕ((f |σA(x))(x)).

for every ϕ ∈ Δ(A). Some applications of the holomorphic functional calculus
are presented in the next section. In passing we mention the straightforward
extension of the holomorphic functional calculus to nonunital algebras.
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Theorem 3.1.9. Let A be a commutative Banach algebra without identity.
For x ∈ A let

H0(x) = {f ∈ H(x) : f(0) = 0}.
Then the functional calculus H(x) → Ae (note that σAe(x) = σA(x)) maps
H0(x) into A, and the mapping f → f(x) from H0(x) into A satisfies (i) to
(iv) in Theorem 3.1.8.

Proof. Recall that Δ(Ae) = Δ̃(A) ∪ {ϕ∞}, where ϕ̃(y + λe) = ϕ(y) + λ
for ϕ ∈ Δ(A), y ∈ A, λ ∈ C. By Theorem 3.1.8, ψ(f(x)) = f(ψ(x)) for all
ψ ∈ Δ(Ae). In particular,

ϕ∞(f(x)) = f(ϕ∞(x)) = f(0) = 0.

Thus, if f(x) = a + λe with a ∈ A and λ ∈ C, then 0 = ϕ∞(f(x)) = λ. This
shows f(x) ∈ A, and hence, for all ϕ ∈ Δ(A),

ϕ(f(x)) = ϕ̃(f(x)) = f(ϕ̃(x)) = f(ϕ(x)).

Hence (iv) holds, and (i) to (iii) follow immediately from Theorem 3.1.8. �	

The single-variable holomorphic functional calculus admits a generalisa-
tion to functions of n variables, n ≥ 2, which involves the techniques of the
theory of holomorphic functions of n complex variables. To prove Shilov’s
idempotent theorem in Section 3.5, we need the following weaker version.

Theorem 3.1.10. Let A be a unital commutative Banach algebra and let
x1, . . . , xn ∈ A. Let f be a complex-valued function of n variables which
is defined and holomorphic on some open set containing the joint spectrum
σA(x1, . . . , xn) of x1, . . . , xn. Then there exists x ∈ A such that

x̂(ϕ) = f(x̂1(ϕ), . . . , x̂n(ϕ))

for all ϕ ∈ Δ(A).

To prove Theorem 3.1.10, the following result, which is due to Oka and
usually referred to as Oka’s extension theorem, is employed (see Section 3.7
for references).

Let n, m ∈ N. Let p1, . . . , pm be polynomials in n complex variables and
let π : Cn → Cn+m denote the mapping defined by

π(z) = (z, p1(z), . . . , pm(z)).

If f is holomorphic on an open neighbourhood of π−1(Dn+m), then there exists
a holomorphic function F , defined on some open neighbourhood of Dn+m such
that F (π(z)) = f(z) for all z ∈ π−1(Dn+m).

In the sequel, as in the case n = 1, for an open subset U of Cn, H(U)
denotes the algebra of holomorphic functions on U .
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Proposition 3.1.11. Let n, m ∈ N and cj > 0 for 1 ≤ j ≤ n + m, and let
p1, . . . , pm be polynomials in n variables. Let

D = {z ∈ C
n+m : |zj| ≤ cj for j = 1, . . . , n + m},

and define π : Cn → Cn+m as above. If f is a function holomorphic on an
open neighbourhood of π−1(D), then there exists a function F holomorphic on
an open neighbourhood of D such that F (π(z)) = f(z) for all z ∈ π−1(D).

Proof. Define three mappings ρ : Cn → Cn, σ : Cn+m → Cn+m, and τ : Cn →
Cn+m, respectively, by

ρ(w1, . . . , wn) = (c1w1, . . . , cnwn),

σ(w1, . . . , wn+m) =

(

w1

c1
, . . . ,

wn+m

cn+m

)

,

τ(w1, . . . , wn) =

(

w1, . . . , wn,
p1(ρ(w))

cn+1
, . . . ,

pm(ρ(w))
cn+m

)

.

Then τ(w) = σ(π(ρ(w))) for all w ∈ Cn, σ(D) = Dn+m, and τ−1(Dn+m) =
ρ−1(π−1(D)).

Let U be an open neighbourhood of π−1(D) in Cn and let f ∈ H(U). Then
ρ−1(U) is an open neighbourhood of τ−1(Dn+m) and f ◦ ρ ∈ H(ρ−1(U)). By
the Oka extension theorem, there exists a holomorphic function G defined
on some open neighbourhood V of Dn+m satisfying G(τ(w)) = f ◦ ρ(w) for
all w ∈ τ−1(Dn+m). Now let F = G ◦ σ. Then F is holomorphic on σ−1(V )
which is an open neighbourhood of D. If now z ∈ π−1(D), then z = ρ(w) with
w ∈ τ−1(Dn+m) and hence

f(z) = f(ρ(w)) = G(τ(w)) = G(σ(π(ρ(w)))) = F (π(z)),

as required. �	

In what follows A is always a commutative Banach algebra with identity
e and An denotes the Cartesian product of n copies of A.

Lemma 3.1.12. Let x = (x1, . . . , xn) ∈ An and let U be an open neighbour-
hood of σA(x) in Cn. Then there exists a finitely generated closed subalgebra
B of A containing e, x1, . . . , xn such that σB(x) ⊆ U .

Proof. Let z = (z1, . . . , zn) ∈ Cn \ σA(x). Then the ideal generated by the
elements zje−xj , 1 ≤ j ≤ n, is not contained in any maximal ideal of A, and
hence there exists y = (y1, . . . , yn) ∈ An such that

n
∑

j=1

(zje − xj)yj = e.
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Fix such a y and let B(z) denote the subalgebra of A generated by the elements
e, x1, . . . , xn, y1, . . . , yn. Then z �∈ σB(z)(x) because otherwise ψ(e) = 0 for
some ψ ∈ Δ(B(z)). Choose an open neighbourhood U(z) of z in C

n with
U(z) ∩ σB(z)(x) = ∅ and let

C = {z ∈ C
n : |zj | ≤ ‖xj‖ for j = 1, . . . , n}.

Because C \ U is compact and σA(x) ⊆ U , by the preceding paragraph there
exist z(1), . . . , z(m) ∈ C \ U such that C \ U ⊆ ∪m

k=1U(z(k)). Each of the
algebras B(z(k)) is finitely generated, and so there exists a finitely generated
closed subalgebra B of A with B(z(k)) ⊆ B for k = 1, . . . , m. Now

σB(x) ∩ U(z(k)) ⊆ σB(z(k)) ∩ U(z(k)) = ∅

for all k and hence σB(x) ∩ (C \ U) = ∅. Since σB(x) ⊆ C, it follows that
σB(x) ⊆ U . �	

The proof of the following lemma is a simple modification of the proof of
Theorem 2.3.6, (i) ⇒ (ii). However, we include the argument for the reader’s
convenience.

Lemma 3.1.13. Let {x1, . . . , xn} be a set of generators for A and (λ1, . . . , λn)
∈ Cn \ σA(x1, . . . , xn). Then there exists a polynomial p such that

|p(λ1, . . . , λn)| > 1 + ‖p(x1, . . . , xn)‖.

Proof. Because (λ1, . . . , λn) �∈ σA(x1, . . . , xn), there exist y1, . . . , yn ∈ A so
that

∑n
j=1(λje − xj)yj = e. Choose δ > 0 such that

δ ·
n
∑

j=1

‖λje − xj‖ <
1
2
.

Since x1, . . . , xn generate A, each element of A can be approximated arbi-
trarily closely by elements of the form r(x1, . . . , xn), where r is a polynomial.
So there exist polynomials q1, . . . , qn such that ‖qj(x1, . . . , xn) − yj‖ < δ,
1 ≤ j ≤ n. Define a polynomial q by

q(z1, . . . , zn) = 1 −
n
∑

j=1

(zj − λj)qj(z1, . . . , zn).

Then q(λ) = 1, and by the choice of δ and the polynomials qj ,

‖q(x1, . . . , xn)‖ ≤
n
∑

j=1

‖xj − λje‖ · ‖yj − qj(x1, . . . , xn)‖ <
1
2
.

Then the polynomial p = ‖q(x1, . . . , xn)‖−1q satisfies

|p(λ1, . . . , λn)| > 2 = 1 + ‖p(x1, . . . , xn)‖,

as is easily verified. �	
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Proposition 3.1.14. Let x = (x1, . . . , xn) ∈ An and let U be an open neigh-
bourhood of σA(x) in Cn. Then there exist xn+1, . . . , xN ∈ A with the following
property. Given f ∈ H(U), there exists a function F , holomorphic on some
open neighbourhood of the polydisc {z ∈ CN : |zj| ≤ 1 + ‖xj‖, 1 ≤ j ≤ N},
such that

f(ϕ(x1), . . . , ϕ(xn)) = F (ϕ(x1), . . . , ϕ(xN ))

for all ϕ ∈ Δ(A).

Proof. By Lemma 3.1.12 there exists a finitely generated closed subalge-
bra B of A containing e, x1, . . . , xn such that σB(x) ⊆ U . Choose elements
xn+1, . . . , xk of B so that x1 . . . , xk generate B.

Given z ∈ Ck \σA(x1, . . . , xk), by Lemma 3.1.13 there exists a polynomial
p in k variables such that |p(z)| > 1+‖p(x)‖ and hence |p(w)| > 1+‖p(x)‖ for
all w in a neighbourhood of z in Ck. Let P denote the projection (z1, . . . , zk) →
(z1, . . . , zn) of Ck onto Cn and let

D = {z ∈ C
k : |zj | ≤ 1 + ‖xj‖ for j = 1, . . . , k}.

Then D \ P−1(U) is compact and contained in Ck \ σA(x1, . . . , xk) since

P (σA(x1, . . . , xk)) = σA(x1, . . . , xn).

Therefore there exist finitely many polynomials p1, . . . , pm in k variables such
that for each z ∈ D \ P−1(U), |pj(z)| > 1 + ‖pj(x)‖ for at least one j ∈
{1, . . . , m}.

Now, let N = k + m, xk+j = pj(x) for j = 1, . . . , m, and

C = {z ∈ C
N : |zj| ≤ 1 + ‖xj‖ for j = 1, . . . , N}.

Moreover, as before, define π : Ck → CN by

π(z) = (z, p1(z), . . . , pm(z))

for z ∈ Ck. Then π−1(C) ⊆ P−1(D) since π(z) ∈ C implies z ∈ D and
|pj(z)| ≤ 1 + ‖pj(x)‖ for j = 1, . . . , m. Since f ◦ P is holomorphic on the
open neighbourhood P−1(U) of π−1(C), by Proposition 3.1.11 there exists F ,
holomorphic on some open neighbourhood of C, such that F (π(z)) = f(P (z))
for all z ∈ π−1(C).

For ϕ ∈ Δ(A) and j = 1, . . . , m, we have

pj(ϕ(x1), . . . , ϕ(xk)) = ϕ(pj(x1, . . . , xk)) = ϕ(xk+j)

and hence π(ϕ(x1), . . . , ϕ(xk)) = (ϕ(x1), . . . , ϕ(xN )). Because |ϕ(xj)| ≤ ‖xj‖
for j = 1, . . . , k and |pj(ϕ(x1), . . . , ϕ(xk))| ≤ ‖pj(x1, . . . , xk)‖ for j =
1, . . . , m, we have π(ϕ(x1), . . . , ϕ(xk)) ∈ C and hence (ϕ(x1), . . . , ϕ(xk)) ∈
π−1(C). Thus
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f(ϕ(x1), . . . , ϕ(xn)) = f(P (ϕ(x1), . . . , ϕ(xk)))
= F (π(ϕ(x1), . . . , ϕ(xk)))
= F (ϕ(x1), . . . , ϕ(xN )),

which is the desired formula. �	

Now we are in a position to prove Theorem 3.1.10. Thus let A be a unital
commutative Banach algebra and x1, . . . , xn ∈ A, and let f be holomorphic
on some open neighbourhood of σA(x1, . . . , xn).

By Proposition 3.1.14 there exist xn+1, . . . , xN ∈ A and a function F
defined and holomorphic on an open neighbourhood of the polydisc

D = {z = (z1, . . . , zN ) ∈ C
N : |zj| ≤ 1 + ‖xj‖ for j = 1, . . . , N}

such that, for all ϕ ∈ Δ(A),

f(ϕ(x1), . . . , ϕ(xn)) = F (ϕ(x1), . . . , ϕ(xN )).

The function F admits a power series expansion

F (z1, . . . , zN ) =
∑

k∈ (N0)N

λk zk1
1 · . . . · zkN

N ,

where k = (k1, . . . , kN ), which converges in a neighbourhood of D and hence
converges absolutely on D. Therefore the series

∑

k∈ (N0)N

|λk| · ‖z1‖k1 · . . . · ‖zN‖kN

converges. Consequently, the series
∑

k∈ (N0)N

λk zk1
1 · . . . · zkN

N

converges in norm to an element y of A. It follows that

ŷ(ϕ) =
∑

k∈ (N0)N

λkϕ(x1)k1 · . . . · ϕ(xN )kN

= F (x̂1(ϕ), . . . , x̂N (ϕ))
= f(x̂1(ϕ), . . . , x̂n(ϕ))

for all ϕ ∈ Δ(A).

3.2 Some applications of the functional calculus

The one-variable holomorphic functional calculus, as explored in the prece-
ding section, is a powerful tool in the investigation of commutative Banach
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algebras. Its applications concern, among others, the structure of the group
G(A) of invertible elements of A, the existence of idempotents, approximation
theory, and the question of whether compactness of Δ(A) forces A to be unital.
We start with the latter problem.

Theorem 3.2.1. Let A be a commutative Banach algebra and suppose that
Δ(A) is compact. Let x ∈ A be such that x̂(ϕ) �= 0 for all ϕ ∈ Δ(A), and let
f be a holomorphic function on some open neighbourhood of x̂(Δ(A)). Then
there exists y ∈ A so that ŷ = f ◦ x̂.

Proof. By hypothesis, x̂(Δ(A)) is a compact subset of C\{0}. Choose disjoint
open sets U and V in C such that x̂(Δ(A)) ⊆ U , 0 ∈ V , and f is holomorphic
on U . Define g : U ∪ V → C by g|U = f and g|V = 0 and let y = g(x) ∈ A
(see Theorems 3.1.8 and 3.1.9). Then

ŷ(ϕ) = ϕ(y) = ϕ(g(x)) = g(ϕ(x)) = f(ϕ(x)) = f ◦ x̂(ϕ)

for all ϕ ∈ Δ(A) since x̂(Δ(A)) ⊆ U. �	

Corollary 3.2.2. Let A be a semisimple commutative Banach algebra. Sup-
pose that Δ(A) is compact and that there exists x ∈ A such that x̂(ϕ) �= 0 for
all ϕ ∈ Δ(A). Then A has an identity.

Proof. Let f be the function f(z) = z−1 on C\ {0}. Since x̂(Δ(A)) ⊆ C\ {0},
by Theorem 3.2.1 there exists y ∈ A such that

ϕ(y) = f(ϕ(x)) =
1

ϕ(x)

for all ϕ ∈ Δ(A). Then the element u = xy ∈ A satisfies

ϕ(ua) = ϕ(x)ϕ(y)ϕ(a) = ϕ(a)

for all a ∈ A and ϕ ∈ Δ(A). Semisimplicity of A implies that ua = a for all
a ∈ A. So u is an identity for A. �	

Corollary 3.2.3. Let A be a semisimple commutative Banach ∗-algebra. If
Δ(A) is compact and the Gelfand homomorphism of A is a ∗-homomorphism,
then A is unital.

Proof. According to Corollary 3.2.2 it suffices to show the existence of some
x ∈ A such that x̂(ϕ) �= 0 for all ϕ ∈ Δ(A). For each ϕ ∈ Δ(A), there exists
yϕ ∈ A with ϕ(yϕ) �= 0. By continuity, ψ(yϕ) �= 0 for all ψ in some neighbour-
hood Vϕ of ϕ in Δ(A). Since Δ(A) is compact, there exist ϕ1, . . . , ϕn ∈ Δ(A)
such that

Δ(A) =
n
⋃

j=1

Vϕj .
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Now consider the element

x =
n
∑

j=1

yϕj y
∗
ϕj

of A. If ϕ ∈ Δ(A), then ϕ ∈ Vϕk
for some 1 ≤ k ≤ n. Since the Gelfand

homomorphism of A is a ∗-homomorphism, it follows that

x̂(ϕ) =
n
∑

j=1

ŷϕj y
∗
ϕj

(ϕ) =
n
∑

j=1

∣

∣ŷϕj (ϕ)
∣

∣

2 ≥ |ϕ(yϕk
)|2 > 0.

Thus x̂(ϕ) �= 0 for every ϕ ∈ Δ(A). �	

It is true in general that a semisimple commutative Banach algebra with
compact structure space is unital. The proof, however, requires Shilov’s idem-
potent theorem, which in turn builds on the multivariable holomorphic func-
tional calculus, and is presented in Section 3.5. We now proceed to study G(A)
when A is unital.

In the sequel, we denote by log the usual branch of the logarithm with
domain C \ (−∞, 0].

Lemma 3.2.4. Let x ∈ A be such that σA(x) ⊆ C \ (−∞, 0 ]. Then

exp(log x) = x.

Proof. Let g ∈ H(x) and let p(z) =
∑m

k=0 αkzk be any polynomial. Then,
because the mapping from H(x) into A is a homomorphism and the definition
of f(x) for f ∈ H(x) does not depend on the choice of the curves γj in
Definition 3.1.7, we have

p(g(x)) =
m
∑

k=0

αkg(x)k =
1

2πi

m
∑

k=0

αk

⎛

⎝

n
∑

j=1

∫

γj

g(z)k(ze − x)−1dz

⎞

⎠

=
1

2πi

n
∑

j=1

∫

γj

(p ◦ g)(z)(ze − x)−1dz

= (p ◦ g)(x).

Now let pm(z) =
∑m

k=0 zk/k!, m ∈ N. The sequence (pm)m converges to the
exponential function uniformly on compact subsets of C, and hence exp(log z)
is the uniform limit of pm(log z) on compact subsets of C\(−∞, 0]. This implies

pm(log x) −→ exp(log x) and (pm ◦ log)(x) −→ (exp ◦ log)(x) = x.

Since pm(log x) = (pm ◦ log)(x) by the above calculation, we conclude that
exp(log x) = x. �	

Corollary 3.2.5. If x ∈ A is such that ‖e−x‖ < 1 , then x = exp y for some
y ∈ A.
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Proof. If ‖e − x‖ < 1, then σA(x) ⊆ {z ∈ C : |z − 1| < 1} and hence
x = exp(log x) ∈ expA by Lemma 3.2.4. �	

We are now able to identify exp(A) within G(A).

Theorem 3.2.6. Let A be a commutative Banach algebra with identity e.
Then expA equals the connected component of e in G(A).

Proof. Note first that Theorem 3.1.8(ii) and the functional equation of the
exponential function imply that

exp x · exp y = exp(x + y)

for all x, y ∈ A. It follows that expA is a group and expA ⊆ G(A). For x ∈ A,
the map γ : t → exp(tx) from [0, 1] into A is continuous because

‖ exp(tx) − exp(sx)‖ ≤ |t − s|
∞
∑

j=1

1
j!
|t − s|j−1‖x‖j.

Since γ(0) = e and γ(1) = expx, we deduce that exp A is connected.
To prove that expA actually equals the connected component of e in G(A),

it suffices to show that expA is both open and closed in G(A). Let y = expx
and consider any z ∈ A with ‖z − y‖ < ‖y−1‖−1. Then

‖e − y−1z‖ ≤ ‖y−1‖ · ‖y − z‖ < 1,

and hence y−1z = exp a for some a ∈ A by Corollary 3.2.5. Thus

z = y log a = expx exp a = exp(x + a) ∈ exp A.

This shows that expA is open. To see that expA is also closed in G(A), let
y ∈ G(A) be in the closure of expA and choose z ∈ exp A so that ‖z − y‖ <
‖y−1‖−1. Arguing as above, we conclude that y−1z ∈ expA and therefore
y ∈ exp A since z ∈ exp A and expA is a group. �	

Theorem 3.2.6 and the next lemma are employed to prove that G(A) is
either connected or has infinitely many connected components.

Lemma 3.2.7. Let a be an element of finite order in G(A). Then a belongs
to the connected component of e in G(A).

Proof. Choose n ∈ N such that an = e, and for each λ ∈ C define an element
a(λ) ∈ A by

a(λ) =
n−1
∑

j=0

(λ − 1)j(λa)n−1−j .

Then, by definition of a(λ),
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(λn − (λ − 1)n)e = (λa)n − (λ − 1)ne = (λa − (λ − 1)e)a(λ).

It follows that λa − (λ − 1)e ∈ G(A) whenever λn �= (λ − 1)n. The map
γ : λ → λa − (λ − 1)e from C into A is continuous and satisfies γ(0) = e
and γ(1) = a. Now, it is not difficult to find a continuous function t → λ(t)
from [0, 1] into C such that λ(0) = 0, λ(1) = 1, and λ(t)n �= (λ(t) − 1)n for
all t. Then t → γ(λ(t)), t ∈ [0, 1], is a path in G(A) connecting e = γ(λ(0))
and a = γ(λ(1)). Thus a lies in the connected component of the identity in
G(A). �	

Theorem 3.2.8. Let A be a unital commutative Banach algebra. Then either
G(A) is connected or G(A) has infinitely many connected components.

Proof. Let Ce denote the connected component of the identity e in G(A).
Since elements of finite order of G(A) lie in Ce, it suffices to show that if
x ∈ G(A) is such that x �∈ Ce, then no two of the elements xn, n ∈ Z, belong
to the same connected component of G(A). Towards a contradiction, assume
that, for some connected component C of G(A), there exist k, l ∈ Z with k > l
and xk, xl ∈ C. Then Cx−l = Ce and xk−l ∈ Cx−l = Ce. Thus xn ∈ Ce for
some n ∈ N.

By Theorem 3.2.6, there exists y ∈ A such that xn = exp y. Let u =
exp(−(1/n)y), so that u ∈ Ce (Theorem 3.2.6) and

(ux)n = unxn = exp(−y) exp y = e.

So ux is an element of G(A) of finite order. By Lemma 3.2.7, ux ∈ Ce. Since
Ce is a group, it follows that x ∈ Ce. This contradiction finishes the proof. �	

Our next application of the holomorphic functional calculus concerns the
existence of idempotents.

Theorem 3.2.9. Let A be a commutative Banach algebra with identity e. Let
x ∈ A and suppose that σ(x) =

⋃m
j=1 Cj, where the sets Cj , 1 ≤ j ≤ m, are

nonempty, pairwise disjoint, and open and closed in σ(x). Then there exist
idempotents e1, . . . , em in A with the following properties.

(i) e =
∑m

j=1 ej , ej �= 0 and ejek = 0 for 1 ≤ j, k ≤ m, k �= j.
(ii) Each ej is contained in the closed linear span of all elements of the form

(λe − x)−1, λ ∈ ρ(x).

Proof. Because C1, . . . , Cm are compact, there exist pairwise disjoint open
subsets V1, . . . , Vm of C such that Cj ⊆ Vj . For each j, choose an open subset
Wj of C such that Wj ∩ σ(x) = Cj . Then the sets Uj = Vj ∩ Wj , 1 ≤ j ≤ m,
are pairwise disjoint and open and satisfy Uj ∩ σ(x) = Cj . Let U =

⋃m
j=1 Uj

and, for each j, define a function fj on U by

fj(z) =
{

1 if z ∈ Uj ,
0 if z ∈ U \ Uj .
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Clearly, the holomorphic functions fj satisfy f2
j = fj and

∑m
j=1 fj(z) = 1 for

all z ∈ U . Let ej = fj(x) ∈ A, 1 ≤ j ≤ m. Then e2
j = ej , ejek = 0 for j �= k

and

e = 1U (x) =
m
∑

j=1

fj(x) =
m
∑

j=1

ej .

Moreover, for each j, ej �= 0 since 1 ∈ fj(σ(x)) = σ(ej). Finally, by the
definition of fj(x), this element is a norm limit of finite linear combinations
of elements of the form (λe − x)−1, where λ ∈ C \ σ(x). �	

Corollary 3.2.10. Let A and e be as in Theorem 3.2.9. If, for some x ∈ A,
the spectrum σ(x) is not connected, then there exists an idempotent e′ in A
such that e′ �= 0 and e′ �= e.

Runge’s classical approximation theorem asserts that if K is a compact
subset of C and Λ is a subset of C such that Λ ∩ C �= ∅ for each bounded
connected component C of C\K, then every function f , which is holomorphic
in a neighbourhood of K, can be approximated uniformly on K by rational
functions with poles only among the points of Λ and at infinity. The next
theorem is therefore justifiably often referred to as the abstract Runge theorem.

Theorem 3.2.11. Let A be a commutative Banach algebra with identity e
and let x ∈ A. Suppose that Λ is a subset of C \ σ(x) such that Λ ∩ C �=
∅ for every bounded connected component C of C \ σ(x). Let B denote the
smallest closed subalgebra of A containing e, x, and all the elements of the
form (λe − x)−1, λ ∈ Λ. Then (μe − x)−1 ∈ B for every μ ∈ C \ σ(x).

Proof. By the Hahn–Banach theorem, it suffices to show that if l ∈ A∗ is such
that l|B = 0, then l((μe−x)−1) = 0 for all μ ∈ ρ(x). As we have shown in the
proof of Theorem 1.2.8, the function f on ρ(x) defined by f(μ) = l((μe−x)−1)
is holomorphic. Now, if |μ| > ‖x‖, then the series

(μe − x)−1 =
∞
∑

n=0

μ−(n+1)xn

converges absolutely in A. Thus (μe−x)−1 ∈ B for all such μ and this implies
that f vanishes on the unbounded connected component of ρ(x).

It remains to prove that f = 0 on each bounded component C of ρ(x).
Since f is holomorphic and C∩Λ �= ∅ by hypothesis, it is enough to show that
if λ ∈ Λ then f vanishes in some neighbourhood of λ. Fix such a λ and consider
any μ ∈ C such that |μ−λ| < ‖(λe− x)−1‖−1. Then ‖(λ−μ)(λe− x)−1‖ < 1
and hence y = e − (λ − μ)(λe − x)−1 is invertible with inverse given by

y−1 =
∞
∑

n=0

(λ − μ)n(λe − x)−n

(Lemma 1.2.6). It follows that (λe − x)y = μe − x is invertible and
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(μe − x)−1 =
∞
∑

n=0

(λ − μ)n(λe − x)−(n+1).

Because l is continuous and l|B = 0, we obtain that

f(μ) = l((μe − x)−1) =
∞
∑

n=0

(λ − μ)nl((λe − x)−(n+1)) = 0.

Thus f vanishes in a neighbourhood of λ. �	

3.3 The Shilov boundary

Let A be a commutative Banach algebra. In this section we prove the existence
of a unique smallest closed subset ∂(A) of Δ(A) on which each of the functions
|â|, a ∈ A, attains its maximum, and we establish a number of interesting
results concerning ∂(A) which are used later in the book. In addition, we
present several illustrative examples.

Definition 3.3.1. Let X be a set and F a family of bounded complex valued
functions on X . A subset R of X is called a boundary for F if for each f ∈ F
there exists y ∈ R such that

|f(y)| = sup
x∈X

|f(x)|.

As a motivating example for introducing this notion of a boundary consider
D, the closed unit disc, and F = P (D). Then the maximum modulus principle
tells us that T = {z ∈ C : |z| = 1}, the topological boundary of D in C, is a
boundary for P (D) in the above sense. Conversely, let z0 ∈ T and let f ∈ P (D)
be the function defined by

f(z) =
1
2

(1 + z̄0z).

Then f(z0) = 1 and |f(z)| < 1 for every z ∈ D, z �= z0. This means that T is
contained in every boundary for P (D).

It turns out that under very natural assumptions on X and F there always
exists a unique smallest closed boundary for F . This is the content of the
following theorem.

Theorem 3.3.2. Let X be a locally compact Hausdorff space and suppose that
A is a subalgebra of C0(X) which strongly separates the points of X. Then the
intersection of all closed boundaries for A is a boundary for A.

Proof. Let R denote the set of all closed boundaries for A. Then R is
nonempty since X ∈ R. We introduce a partial ordering on R by setting
R1 ≥ R2 if and only if R1 ⊆ R2.
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We are going to show that R satisfies the hypothesis of Zorn’s lemma. To
that end, let {Rλ : λ ∈ Λ} be a linearly ordered subset of R and let

R =
⋂

{Rλ : λ ∈ Λ}.

In order to prove that R is a boundary for A, consider any f ∈ A, f �= 0, and
set

Xf = {x ∈ X : |f(x)| = ‖f‖∞}.
Then Xf is nonempty and compact because f �= 0 and f vanishes at infinity.
Now, for each λ ∈ Λ, Rλ ∩ Xf �= ∅ since Rλ is a boundary. The collection
{Rλ ∩Xf : λ ∈ Λ} of compact subsets of X is linearly ordered and hence has
the finite intersection property. It follows that

R ∩ Xf =
⋂

λ∈Λ

(Rλ ∩ Xf ) �= ∅.

In particular, there exists x ∈ R such that |f(x)| = ‖f‖∞. This shows that R
is a boundary for A.

We have thus seen that every linearly ordered subset of R has an upper
bound. By virtue of Zorn’s lemma there exists a maximal element R0 in R. It
remains to show that R0 ⊆ R for each R ∈ R. Suppose that R0 �⊆ R for some
R ∈ R. Fix x0 ∈ R0 \ R and choose an open neighbourhood U of x0 such
that U ∩R = ∅. Because A strongly separates the points of X , by Proposition
2.2.14 X carries the weak topology defined by the functions in A. Therefore,
we can assume that U is of the form

U(x0, f1, . . . , fm, ε) = {x ∈ X : |fj(x) − fj(x0)| < ε for 1 ≤ j ≤ m},

where 0 < ε < 1 and f1, . . . , fm ∈ A. Moreover, we can assume that

|fj(x) − fj(x0)| ≤ 1 for all x ∈ X and 1 ≤ j ≤ m.

Indeed, since A ⊆ C0(X),

M = sup{|fj(x) − fj(x0)| : x ∈ X, 1 ≤ j ≤ m} < ∞,

and replacing fj by hj = (1/M)fj in case M > 1, the functions hj satisfy the
above condition and also

U(x0, h1, . . . , hm, ε
M ) ⊆ U(x0, f1, . . . , fm, ε).

Now, R0 is a maximal element in R, and therefore the set R0 \U cannot be a
boundary. Hence there exists f ∈ A with |f(y)| < ‖f‖∞ for all y ∈ R0 \U . Of
course, replacing f by ‖f‖−1

∞ f , we can assume that ‖f‖∞ = 1. Then |f(y)| < 1
for all y ∈ R0 \ U and hence, since f ∈ C0(X),

sup {|f(y)| : y ∈ R0 \ U} < 1.
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Choose k ∈ N such that |f(y)|k < ε for all y ∈ R0 \ U and set g = fk. Then
‖g‖∞ = 1 and, for every x ∈ U ,

|g(x)fj(x) − g(x)fj(x0)| ≤ ‖g‖∞|fj(x) − fj(x0)| < ε.

Also, for y ∈ R0 \ U ,

|g(y)fj(y) − g(y)fj(x0)| = |g(y)| · |fj(y) − fj(x0)| < ε.

Since R0 is a boundary we conclude that

‖gfj − fj(x0)g‖∞ < ε

for 1 ≤ j ≤ m. On the other hand, R is a boundary and hence

1 = ‖g‖∞ = |g(x)|

for some x ∈ R. It follows that

|fj(x) − fj(x0)| = |g(x)fj(x) − g(x)fj(x0)| < ε

for all j. Thus x ∈ U, which contradicts U ∩R = ∅. So R0 ⊆ R for all R ∈ R,
and this finishes the proof. �	

Definition 3.3.3. Let X be a locally compact Hausdorff space and A a sub-
algebra of C0(X) which strongly separates the points of X . The intersection
of all closed boundaries for A, which is a boundary by Theorem 3.3.2, is called
the Shilov boundary of A and denoted by ∂(A).

Clearly, ∂(A) is the unique minimal closed boundary for A. Theorem 3.3.2
yields the following characterisation of points in ∂(A) by means of a peak point
property which can very effectively be used to compute the Shilov boundary
of concrete examples.

Corollary 3.3.4. A point x ∈ X belongs to the Shilov boundary of A if and
only if given any open neighbourhood U of x, there exists f ∈ A such that

‖f |X\U‖∞ < ‖f |U‖∞.

Proof. First, let x ∈ X \ ∂(A). Then U = X \ ∂(A) is an open neighbourhood
of x and because ∂(A) is a boundary, we have for all f ∈ A,

‖f |U‖∞ ≤ ‖f‖∞ = ‖f |∂(A)‖∞ = ‖f |X\U‖∞.

Conversely, let x ∈ ∂(A) and suppose there exists an open neighbourhood U
of x such that

‖f |U‖∞ ≤ ‖f |X\U‖∞
for all f ∈ A. Then X \ U is a boundary for A, so that ∂(A) ⊆ X \ U . This
contradicts x ∈ ∂(A). �	
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We now examine a number of examples.

Example 3.3.5. (1) Let X be a locally compact Hausdorff space and let A
be a subalgebra of C0(X) with the property that given any closed subset E
of X and x ∈ X \E, there exists f ∈ A such that f(x) �= 0 and f |E = 0. It is
obvious that then ∂(A) = X . Hence, in particular, ∂(C0(X)) = X .

(2) Let X be a compact subset of C. We claim that ∂(R(X)) coincides with
∂(X), the topological boundary of X . Notice first that since each f ∈ R(X) is
holomorphic on the interior X◦ of X , it follows from the maximum modulus
principle that ∂(X) = X \ X◦ is a boundary for R(X).

To see that conversely ∂(R(X)) contains ∂(X), we have to verify that every
point in ∂(X) fulfills the condition in Corollary 3.3.4. Thus, let z0 ∈ ∂(X), and
let U be an open neighbourhood of z0 in X . Choose an open disc V of radius
r > 0 around z0 so that V ∩X ⊆ U and pick z1 ∈ V \X with |z1 − z0| < r/2.
Let f ∈ R(X) be the function defined by

f(z) =
1

z − z1
, z ∈ X.

Then, for x ∈ X \ U, |z − z0| ≥ r and hence

|z − z1| ≥ |z − z0| − |z1 − z0| >
r

2
.

It follows that ‖f |X\U‖∞ ≤ 2/r. On the other hand,

‖f |U‖∞ ≥ 1
|z1 − z0|

>
2
r
.

So z0 satisfies the hypothesis in Corollary 3.3.4.
(3) Continue to let X be a compact subset of C. Then ∂(P (X)) equals

the topological boundary of the unbounded component of C \ X . To show
this, assume first that X is polynomially convex. Then C \ X is connected
(Theorem 2.3.7) and P (X) = R(X) by Theorem 2.5.8. Therefore, example
(2) yields ∂(P (X)) = ∂(R(X)) = ∂(X) = ∂(C \ X).

Now, for arbitrary X , P (X) is isometrically isomorphic to P ( ̂Xp) (Theo-
rem 2.5.7). Hence every boundary for P (X) is a boundary for P ( ̂Xp). By the
preceding paragraph we obtain

∂(P (X)) = ∂(P ( ̂Xp)) = ∂(C \ ̂Xp).

However, C\ ̂Xp coincides with the unbounded component C of C\X . Indeed,
C \ C is a compact subset of C with connected complement and hence is
polynomially convex. As X ⊆ C \ C ⊆ ̂Xp, we get C \ C = ̂Xp.

(4) The description of ∂(P (X)) in (3) does not remain true for compact
subsets X of Cn when n ≥ 2. To demonstrate this we show that ∂(P (Dn)) =
Tn for n ≥ 2. First, let w = (eit1 , . . . , eitn) ∈ Tn, t1, . . . , tn ∈ R. Then the
polynomial function f defined by
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f(z1, . . . , zn) =
1
2n

n
∏

j=1

(1 + zje
−itj )

satisfies f(w) = 1 and |f(z)| < 1 for all z ∈ Dn, z �= w. This proves Tn ⊆
∂(P (Dn)). It remains to verify that T

n is a boundary for P (Dn). To see this,
let f ∈ P (Dn) and z = (z1, . . . , zn) ∈ Dn such that ‖f‖∞ = |f(z)|. Then the
function

w → f(w, z2, . . . , zn),

w ∈ D, belongs to P (D), and hence

|f(z1, . . . , zn)| ≤ |f(eit1 , z2, . . . , zn)|

for some t1 ∈ R. Next, the function

w → f(eit1 , w, z3, . . . , zn)

is in P (D). As before, it follows that, for some t2 ∈ R,

|f(eit1 , z2, . . . , zn)| ≤ |f(eit1 , eit2 , z3, . . . , zn)|.

Continuing in this manner, we find t1, . . . , tn ∈ R such that

|f(z1, . . . , zn)| ≤ |f(eit1 , . . . , eitn)|.

This shows ‖f‖∞ = ‖f |Tn‖∞. Thus Tn is a boundary for P (Dn) and, since
Tn ⊆ ∂(P (Dn)), we get that Tn = ∂(P (Dn)). However, Cn \ Dn is connected
and

∂(Cn \ D
n) = {z ∈ D

n : zj ∈ T for at least one j}

does not equal T
n when n ≥ 2.

We now introduce the notion of a boundary for an arbitrary commutative
Banach algebra.

Definition 3.3.6. Let A be a commutative Banach algebra and Γ : A →
C0(Δ(A)) the Gelfand representation of A. A subset R of Δ(A) is called
a boundary for A if R is a boundary for Γ (A), the range of the Gelfand
homomorphism. In particular, ∂(Γ (A)) is called the Shilov boundary of A
and denoted ∂(A).

Let X be a locally compact Hausdorff space and A a closed subalgebra
of C0(X). Then, according to Definitions 3.3.1 and 3.3.6, we have to distin-
guish between boundaries for the family A of functions on X and boundaries
for the commutative Banach algebra A, the latter being the boundaries of
Γ (A) ⊆ C0(Δ(A)). However, as explained in the following remark, the two
Shilov boundaries are canonically homeomorphic provided that A satisfies
some natural conditions.
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Remark 3.3.7. Suppose that A strongly separates the points of X . Then the
mapping φ : x → ϕx, where ϕx(f) = f(x) for f ∈ A, is a homeomorphism
from X onto φ(X) ⊆ Δ(A) because, by Proposition 2.2.14, X carries the weak
topology defined by the functions f ∈ A. Moreover, for every subset Y of X ,

‖f |Y ‖ = sup
y∈Y

|f(y)| = sup
y∈Y

|ϕy(f)| = ‖ ̂f |φ(Y )‖∞.

Therefore every boundary for A ⊆ C0(X) is a boundary for Γ (A). In partic-
ular, if φ(X) is closed Δ(A), then φ(∂(A)) = ∂(Γ (A)).

In the next remark we draw attention to the question of how the Shilov
boundaries of A and of its unitisation are related.

Remark 3.3.8. Let Ae be the commutative Banach algebra obtained from A
by adjoining an identity e to A. As we always do, regard Δ(A) as a subset of
Δ(Ae). Let ϕ ∈ ∂(A), and let U be an open neighbourhood of ϕ in Δ(A). By
Corollary 3.3.4 there exists x ∈ A such that

‖x̂|U‖∞ > ‖x̂|Δ(A)\U‖∞.

Since x̂(ϕ∞) = 0 and U is an open neighbourhood of ϕ in Δ(Ae), it follows
from Corollary 3.3.4 that ϕ is an element of the Shilov boundary of Ae. Con-
versely, since x̂(ϕ∞) = 0 for all x ∈ A, it is clear that ∂(Ae) ∩ Δ(A) ⊆ ∂(A).
Thus ∂(A) = ∂(Ae)∩Δ(A). For a generalisation of this equation see Exercise
3.6.10.

The conclusion of the next theorem was the originally reason for introduc-
ing the Shilov boundary.

Theorem 3.3.9. Let A be a commutative Banach algebra and B a closed
subalgebra of A. Then every ϕ ∈ ∂(B) extends to an element of Δ(A).

Proof. Considering Ae and its subalgebra Be and having in mind that ∂(B) ⊆
∂(Be) shows that we can assume that A has an identity e and that e ∈ B.
Let ϕ ∈ ∂(B) and suppose first that ker ϕ ⊆ ker ψ for some ψ ∈ Δ(A). Then
B ∩ ker ψ = ker ϕ since ker ϕ is of codimension one in B and e ∈ B \ ker ψ.
Thus ker(ψ|B) = ker ϕ, and since ψ(e) = 1 = ϕ(e), this gives ψ|B = ϕ.

Thus we are left with the more difficult task of showing that such a ψ
always exists. Towards a contradiction, assume that kerϕ �⊆ M for each M ∈
Max(A). Let I denote the ideal of A generated by kerϕ, that is,

I =

{

n
∑

i=1

aibi : ai ∈ A, bi ∈ ker ϕ, n ∈ N

}

.

Then I = A, because otherwise ker ϕ ⊆ I ⊆ M for some M ∈ Max(A). Let

e =
n
∑

i=1

aibi,
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where ai ∈ A and bi ∈ ker ϕ. Replacing each ai by a suitable scalar multiple of
itself, we can assume that ‖̂bi‖∞ ≤ 1 for all i. Now, choose a positive number
R such that

R ≥ max
1≤i≤n

‖âi‖∞,

and define an open neighbourhood U of ϕ in Δ(B) by

U =
{

ψ ∈ Δ(B) : |ψ(bi) − ϕ(bi)| <
1

2nR
for 1 ≤ i ≤ n

}

=
{

ψ ∈ Δ(B) : |ψ(bi)| <
1

2nR
for 1 ≤ i ≤ n

}

.

Since ϕ ∈ ∂(B), by Corollary 3.3.4 there exists x ∈ B such that

‖x̂|Δ(B)\U‖∞ < ‖x̂|U‖∞.

Thus we find m ∈ N such that the element y = (‖x̂‖−1
∞ x)m of A satisfies

‖ŷ‖∞ = 1 and |ψ(y)| <
1

2nR

for all ψ ∈ Δ(B) \ U . This implies, for ψ ∈ Δ(B) \ U and each i = 1, . . . , n,

|ψ(y)ψ(bi)| ≤ ‖̂bi‖∞|ψ(y)| <
1

2nR
.

Also, for ψ ∈ U ,

|ψ(y)ψ(bi)| ≤ ‖ŷ‖∞|ψ(bi)| <
1

2nR
.

Combining these two inequalities and using that y = y
∑n

i=1 aibi, we obtain

1 = ‖ŷ‖∞ ≤
n
∑

i=1

‖âi‖∞ sup
ρ∈Δ(A)

|ρ(y)ρ(bi)|

≤
n
∑

i=1

‖âi‖∞ sup
ψ∈Δ(B)

|ψ(y)ψ(bi)|

≤ R ·
n
∑

i=1

sup
ψ∈Δ(B)

|ψ(y)ψ(bi)|

<
1
2
.

This contradiction shows that kerϕ ⊆ kerψ for some ψ ∈ Δ(A), and this
finishes the proof of the theorem. �	

Theorem 3.3.9 proves very useful when we take up the problem of extend-
ing elements of Δ(B) to elements of Δ(A) again in Section 3.4 and in Chapter
4. For instance, applying the theory of topological divisors of zero, we show
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in Theorem 3.4.13 that if A is unital, then each ϕ ∈ ∂(B) actually extends to
some element of ∂(A).

In passing we give an example which shows that it may well happen that
the elements in ∂(B) are the only elements of Δ(B) extending to all of A.

Example 3.3.10. Let A = C(T) and B = P (T). Then

∂(B) = T = Δ(A) and Δ(B) = D,

and obviously no ϕz ∈ Δ(B), |z| < 1, extends to an element of Δ(C(T)).

The next theorem generalises, in the commutative case, the fact that if
A is a unital Banach algebra and x, y ∈ A are such that x is invertible and
‖y − x‖ < ‖x−1‖−1, then y is invertible too (compare the proof of Lemma
1.2.7(ii)).

Theorem 3.3.11. Let A be a unital commutative Banach algebra and suppose
that x and y are elements of A satisfying

|x̂(ϕ) − ŷ(ϕ)| < |x̂(ϕ)|

for all ϕ ∈ ∂(A). Then x is invertible if and only if y is invertible.

Proof. Because ∂(A) is compact and the function

ϕ → |x̂(ϕ)| − |x̂(ϕ) − ŷ(ϕ)|

is continuous, the hypothesis implies that

c = inf
ϕ∈∂(A)

{|x̂(ϕ)| − |x̂(ϕ) − ŷ(ϕ)|} > 0.

Choose n ∈ N such that nc > r(x − y), and consider the sequence

nx, (n − 1)x + y, . . . , (n − k)x + ky, . . . , ny

of elements of A. Suppose the statement of the theorem is wrong, so that either
nx ∈ G(A) and ny /∈ G(A), or nx /∈ G(A) and ny ∈ G(A). In addition, assume
that for each invertible element in the above sequence, both its predecessor
and its successor (as long as they exist) are invertible too. Apparently, then
nx ∈ G(A) implies ny ∈ G(A) and conversely. This contradiction shows that
there exists 0 ≤ k ≤ n such that

(n − k)x + ky

is invertible, but one of its immediate neighbours is not invertible. Let l = k−1
if 0 < k ≤ n and

(n − (k − 1))x + (k − 1)y /∈ G(A),
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and in the remaining cases put l = k + 1. Since (n− l)x + ly is not invertible,
there exists ϕ0 ∈ Δ(A) such that

ϕ0((n − l)x + ly) = 0.

Let z = ((n − k)x + ky)−1. It follows that

r(x − y) < nc = inf
ϕ∈∂(A)

{n|x̂(ϕ)| − n|x̂(ϕ) − ŷ(ϕ)|}

≤ inf
ϕ∈∂(A)

{n|x̂(ϕ)| − k|x̂(ϕ) − ŷ(ϕ)|}

≤ inf
ϕ∈∂(A)

|nx̂(ϕ) − k(x̂(ϕ) − ŷ(ϕ))|

= inf
ϕ∈∂(A)

|ẑ(ϕ)|−1

=
(

sup
ϕ∈∂(A)

|ẑ(ϕ)|
)−1

=
(

sup
ϕ∈Δ(A)

|ẑ(ϕ)|
)−1

= inf
ϕ∈Δ(A)

|ẑ(ϕ)|−1 ≤ |nx̂(ϕ0) − k(x̂(ϕ0) − ŷ(ϕ0))|

= |nx̂(ϕ0) − k(x̂(ϕ0) − ŷ(ϕ0)) − (n − l)x̂(ϕ0) − lŷ(ϕ0)|
= |(l − k)x̂(ϕ0) + (k − l)ŷ(ϕ0)| = |x̂(ϕ0) − ŷ(ϕ0)|
≤ r(x − y).

So we have reached a contradiction, and this shows that nx is invertible if
and only if ny is. �	

We now determine the Shilov boundary of tensor products. Recall that if
γ is an algebra cross-norm on A ⊗ B which dominates the injective norm ε,
then Δ(A ̂⊗γB) identifies with the product space Δ(A) × Δ(B) by means of
the homeomorphism (ϕ, ψ) → ϕ ̂⊗γψ (Theorem 2.11.2).

Proposition 3.3.12. Let A and B be commutative Banach algebras and let
γ be an algebra cross-norm on A⊗B dominating ε. Then the Shilov boundary
of A ̂⊗γB equals ∂(A) × ∂(B) ⊆ Δ(A) × Δ(B) = Δ(A ̂⊗γB).

Proof. The Shilov boundary of A ̂⊗γB is the same as that of A⊗ B, because
a closed boundary for a dense subalgebra is always a boundary for the whole
algebra.

We show first that ∂(A) × ∂(B) is a boundary for A ̂⊗αB. Let

z =
n
∑

j=1

xj ⊗ yj ∈ A ⊗ B, xj ∈ A, yj ∈ B, 1 ≤ j ≤ n.

There exist ϕ ∈ Δ(A) and ψ ∈ Δ(B) such that

‖ẑ‖∞ = |(ϕ ⊗ ψ)(z)| =

∣

∣

∣

∣

∣

n
∑

j=1

ϕ(xj)ψ(yj)

∣

∣

∣

∣

∣

.
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Consider the element x =
∑n

j=1 ψ(yj)xj of A. There exists ϕ0 ∈ ∂(A) such
that |ϕ0(x)| = ‖x̂‖∞. Similarly, for y =

∑n
j=1 ϕ0(xj)yj ∈ B, there exists

ψ0 ∈ ∂(B) such that |ψ0(y)| = ‖ŷ‖∞. Combining all this, we obtain

‖ẑ‖∞ =

∣

∣

∣

∣

∣

∣

n
∑

j=1

ψ(yj)x̂j(ϕ)

∣

∣

∣

∣

∣

∣

=
∣

∣x̂(ϕ)
∣

∣ ≤ ‖x̂‖∞

= |ϕ0(x)| = |ψ(y)| ≤ ‖ŷ‖∞ = |ψ0(y)|
= |(ϕ0 ⊗ ψ0)(z)|.

So the function |ẑ| attains its maximum at ϕ0 ⊗ ψ0 ∈ ∂(A) × ∂(B). Thus
∂(A) × ∂(B) is a boundary for A ̂⊗γB, whence ∂(A) × ∂(B) ⊇ ∂(A ̂⊗γB).

Conversely, let ϕ0 ∈ ∂(A) and ψ0 ∈ ∂(B). Let U be any neighbourhood
of (ϕ0, ψ0) in Δ(A) × Δ(B), and choose open neighbourhoods V of ϕ0 in
Δ(A) and W of ψ0 in Δ(B) such that V × W ⊆ U . Since ϕ0 ∈ ∂(A), by
Corollary 3.3.4 there exists x ∈ A such that ‖x̂‖∞ = 1 and |x̂(ϕ)| < 1 for
all ϕ ∈ Δ(A) \ V . Similarly, there exists y ∈ B such that ‖ŷ‖∞ = 1 and
|ŷ(ψ)| < 1 for all ψ ∈ Δ(B) \ W . Then ‖x̂ ⊗ y‖∞ = 1 and |x̂ ⊗ y(ω)| < 1 for
all ω ∈ (Δ(A) × Δ(B)) \ U . Since U was arbitrary, it follows from Corollary
3.3.4 that (ϕ0, ψ0) ∈ ∂(A ⊗ B) = ∂(A ̂⊗γB). �	

We remind the reader that σA(x) ⊆ x̂(Δ(A)) ∪ {0} for every element x
of a commutative Banach algebra A and that σA(x) = x̂(Δ(A)) when A is
unital (Theorem 2.2.5). The next theorem shows that analogous assertions
hold when replacing Δ(A) with the Shilov boundary of A and σA(x) with its
topological boundary.

Theorem 3.3.13. Let A be a commutative Banach algebra and x ∈ A. Then

∂(σA(x)) ⊆ x̂(∂(A)) ∪ {0}.

If A is unital, then ∂(σA(x)) ⊆ x̂(∂(A)).

Proof. We first verify that x̂(∂(A)) ∪ {0} is closed in C. For that, let (λn)n

be a sequence in x̂(∂(A)) converging to some λ0 �= 0. We can assume that
|λn| ≥ 1

2 |λ0| for all n ∈ N. Let ϕn ∈ ∂(A) such x̂(ϕn) = λn, n ∈ N. Because
∂(A) is closed in Δ(A) and x̂ ∈ C0(Δ(A)), the set

C =
{

ϕ ∈ ∂(A) : |x̂(ϕ)| ≥ 1
2
|λ0|

}

is compact. Since ϕn ∈ C, after passing to a subnet if necessary, we can assume
that ϕn → ϕ for some ϕ ∈ ∂(A). It follows that

λ0 = lim
n→∞

λn = lim
n→∞

ϕn(x) = ϕ(x) ∈ x̂(∂(A)),

as claimed.
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Towards a contradiction, suppose now that there exists λ ∈ ∂(σA(x)) such
that λ �∈ x̂(∂(A)) ∪ {0}. Then there exists 0 < δ < 1 such that |x̂(ϕ) − λ| >
δ rA(x) for all ϕ ∈ ∂(A). Since λ ∈ ∂(σA(x)), we find μ ∈ C \ σA(x) such that
|μ − λ| < δ|λ|/2. Temporarily, let B = A if A has an identity e and B = Ae

otherwise. Then μe − x is invertible in B and (μe − x)−1 = (1/μ)e − y for
some y ∈ A. It follows that

ŷ(ϕ) =
1
μ
· x̂(ϕ)
x̂(ϕ) − μ

for all ϕ ∈ Δ(A). Now, for ϕ ∈ ∂(A),

|x̂(ϕ) − μ| ≥ |x̂(ϕ) − λ| − |μ − λ| ≥ δrA(x) − δ

2
|λ| ≥ δ

2
rA(x),

and hence

sup
ϕ∈∂(A)

|ŷ(ϕ)| ≤ 2
δ|μ|rA(x)

sup
ϕ∈∂(A)

|x̂(ϕ)| ≤ 2
δ|μ| .

On the other hand, there exists ψ ∈ Δ(A) such that λ = x̂(ψ). Then

sup
ϕ∈∂(A)

|ŷ(ϕ)| = sup
ϕ∈Δ(A)

|ŷ(ϕ)| ≥ |ŷ(ψ)| =
|λ|

|μ| · |λ − μ| >
2

δ|μ| .

This contradiction shows that ∂(σA(x)) ⊆ x̂(∂(A)) ∪ {0}.
Finally, suppose that A has an identity e. By the first part of the proof,

it only remains to show that if 0 ∈ ∂(σA(x)), then 0 ∈ x̂(∂(A)). To that
end, assume that 0 �∈ x̂(∂(A)). Since x̂(∂(A)) is compact, |λ| ≥ δ for some
δ > 0 and all λ ∈ x̂(∂(A)). Since 0 ∈ ∂(σA(x)), there exists μ ∈ ρA(x) with
|μ| < δ/2. Then y = (μe − x)−1 satisfies

rA(y) = sup
ϕ∈∂(A)

|ŷ(ϕ)| = inf
ϕ∈∂(A)

1
|x̂(ϕ) − μ| ≤

2
δ

.

However, since 0 ∈ σA(x) and A is unital, there exists ϕ ∈ Δ(A) with x̂(ϕ) =
0. Thus

rA(y) ≥ |ŷ(ϕ)| =
1
|μ| >

2
δ

,

a contradiction. So 0 ∈ x̂(∂(A)), as required. �	

In the preceding theorem, it is not true in general that ∂(σA(x)) = x̂(∂(A))
if A is unital (Exercise 3.6.13). However, this equality holds when A is gener-
ated by x (Exercise 3.6.6). In this context, also compare Exercise 3.6.8.

Our final result in this section shows that ∂(A) can be finite only if it
equals Δ(A).

Theorem 3.3.14. Let A be a commutative Banach algebra and suppose that
∂(A) �= Δ(A). Then ∂(A) contains an infinite number of points.
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Proof. Let ϕ and ψ be any two distinct elements of Δ(A). We prove first that
there exists a ∈ A such that â(ϕ) �= 0 and â(ψ) = 0. This is evident if A is
unital, but requires some argument in the general case. Let x be an element
of A such that x̂(ϕ) �= x̂(ψ). If x̂(ψ) = 0, we are done. If x̂(ψ) �= 0, we can
assume that x̂(ψ) = 1, and hence x̂(ϕ) �= 1. If, in addition, x̂(ϕ) �= 0, then
taking a = x − x2 we have â(ψ) = 0 and â(ϕ) = x̂(ϕ)(1 − x̂(ϕ)) �= 0. This
leaves the case x̂(ϕ) = 0 and x̂(ψ) = 1. Choose any y ∈ A with ŷ(ϕ) �= 0.
If ŷ(ψ) = 0, take a = y. If ŷ(ψ) �= 0, let a = x − ψ(y)−1y. Then â(ψ) = 0
whereas

â(ϕ) = x̂(ϕ) − ŷ(ψ)−1ŷ(ϕ) = −ŷ(ψ)−1ŷ(ϕ) �= 0.

Hence an element a with the desired properties exists.
Now, let ϕ1, . . . , ϕn be any finite set of elements of ∂(A) and choose ϕ ∈

Δ(A) \ ∂(A). For each i = 1, . . . , n, by what we have seen above there exists
ai ∈ A such that âi(ϕ) �= 0 and âi(ϕi) = 0. If a = a1 · . . . · an, then â(ϕ) �= 0
whereas â(ϕi) = 0 for all i. This shows that the points ϕ1, . . . , ϕn cannot
exhaust ∂(A) and hence ∂(A) must be infinite. �	

Corollary 3.3.15. If ∂(A) is finite, then so is Δ(A).

We close this section by mentioning a class of Banach algebras for which
the Shilov boundary always equals the whole structure space.

Example 3.3.16. Let A be a commutative symmetric Banach ∗-algebra.
Then ∂(A) = Δ(A). Since A is symmetric, x̂(ϕ) = ̂x∗(ϕ) for all x ∈ A and
ϕ ∈ Δ(A). Thus Γ (A) is a subalgebra of C0(Δ(A)) which strongly separates
the points of Δ(A) and is closed under complex conjugation. Then, by the
Stone–Weierstrass theorem, Γ (A) is dense in C0(Δ(A)). This readily implies
that the Shilov boundary of A is the whole of Δ(A).

3.4 Topological divisors of zero

The theme of this section is to consider a concept which naturally extends that
of zero divisors in the purely algebraic setting to normed algebras. In keeping
with the main focus of this book, we confine ourselves to commutative Banach
algebras. As it turns out, this concept has several interesting applications.

Definition 3.4.1. Let A be a commutative normed algebra. A nonzero ele-
ment x of A is called a topological divisor of zero or topological zero divisor if
there exists a sequence (xn)n in A such that ‖xn‖ = 1 for all n and xnx → 0
as n → ∞.

For any x ∈ A, let

d(x) = inf{‖xy‖ : y ∈ A, ‖y‖ = 1} = inf
{

‖xy‖
‖y‖ : y ∈ A, y �= 0

}

.
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It is obvious that x ∈ A is a topological divisor of zero if and only if d(x) = 0.
This observation leads to the following generalisation. For any finitely many
elements x1, . . . , xn of A, let

d(xn, . . . , xn) = inf

⎧

⎨

⎩

n
∑

j=1

‖xjy‖ : y ∈ A, ‖y‖ = 1

⎫

⎬

⎭

= inf

⎧

⎨

⎩

n
∑

j=1

‖xjy‖
‖y‖ : y ∈ A, y �= 0

⎫

⎬

⎭

.

Definition 3.4.2. A subset S of A consists of joint topological zero divisors
if d(x1, . . . , xn) = 0 for any finitely many x1, . . . , xn ∈ S.

Remark 3.4.3. Suppose that A has an identity e and let x ∈ A be a topo-
logical divisor of zero. Then x is not invertible in A. Indeed, if xn ∈ A, n ∈ N,
are such that ‖xn‖ = 1 and xxn → 0 and if yx = e for some y ∈ A, then

1 = ‖xn‖ = ‖yxxn‖ ≤ ‖y‖ · ‖xxn‖ → 0,

which is impossible.
The converse fails to hold in general. For example, let A = P (D) and

f(z) = z for all z ∈ D. Then f is not invertible. But f fails to be a topological
zero divisor because if (gn)n ⊆ A is a sequence satisfying ‖fgn‖∞ → 0, then
‖gn|T‖∞ → 0 and hence ‖gn‖∞ → 0 by the maximum modulus principle.

We now first identify the topological zero divisors in certain algebras of
continuous functions on topological spaces (Corollary 3.4.5).

Proposition 3.4.4. Let X be a locally compact Hausdorff space and let A be
a subalgebra of C0(X) which strongly separates the points of X. Then, for any
f ∈ A,

d(f) = inf{|f(x)| : x ∈ ∂(A)}.

Proof. Let g ∈ A, g �= 0, and choose x ∈ ∂(A) such that |g(x)| = ‖g‖∞. Then

inf{|f(y)| : y ∈ ∂(A)} ≤ |f(x)| =
|fg(x)|
|g(x)| ≤ ‖fg‖∞

‖g‖∞
.

Thus inf{|f(y)| : y ∈ ∂(A)} ≤ d(f). To show that actually equality holds, we
can assume without loss of generality that d(f) > 0. Let

R = {x ∈ X : |f(x)| ≥ d(f)}.

Then R is compact since f ∈ C0(X). We claim that R is a boundary for A.
Towards a contradiction, assume that there exists g ∈ A such that ‖g‖∞ >
|g(y)| for all y ∈ R. Then ‖g‖∞ > ‖g|R‖∞ since R is compact. Of course, we
can assume that ‖g‖∞ = 1. For every n ∈ N, there exists xn ∈ ∂(A) so that



3.4 Topological divisors of zero 171

|f(xn)gn(xn)| = ‖fgn‖∞.

Since ‖gn‖∞ = 1, it follows that

d(f) ≤ ‖fgn‖∞ = |f(xn)gn(xn)| ≤ |f(xn)|.

Hence xn ∈ R and therefore

|gn(xn)| ≤ ‖gn|R‖∞ = ‖g|R‖n
∞

for each n. Now ‖g|R‖n
∞ → 0 as n → ∞ since ‖g|R‖∞ < 1. Thus d(f) = 0,

contradicting our assumption.
Finally, as A strongly separates the points of X and R has been seen to be

a boundary, Theorem 3.3.2 shows that ∂(A) ⊆ R. This in turn implies that

d(f) ≤ inf{|f(x)| : x ∈ R} ≤ inf{|f(x)| : x ∈ ∂(A)},

as required. �	
The following corollary is an immediate consequence of Proposition 3.4.4.

Corollary 3.4.5. Let X be a locally compact Hausdorff space and let A be a
subalgebra of C0(X) which strongly separates the points of X. If f ∈ A, then
f is a topological divisor of zero if and only if

inf{|f(x)| : x ∈ ∂(A)} = 0.

In particular, if ∂(A) is compact then f is a topological divisor of zero if and
only f(x) = 0 for some x ∈ ∂(A).

Corollary 3.4.6. Let A be a unital commutative Banach algebra and suppose
that ‖x‖2 ≤ k‖x2‖ for some k > 0 and all x ∈ A. Then an element x of A is
a topological divisor of zero if and only if ϕ(x) = 0 for some ϕ ∈ ∂(A).

Proof. The hypothesis on A implies that the Gelfand homomorphism Γ : A →
C(Δ(A)) is injective and that the two norms y → ‖y‖ and y → ‖ŷ‖∞ on A
are equivalent (compare Exercise 2.12.9). Thus there are positive constants c
and d such that c‖y‖ ≤ ‖ŷ‖∞ ≤ d‖y‖ for all y ∈ A. Now, if yn ∈ A, n ∈ N,
are such that ‖yn‖ = 1 and xyn → 0, then

d(x̂) ≤ ‖x̂ ŷn‖∞
‖ŷn‖∞

≤ d‖xyn‖
c‖yn‖

→ 0,

and conversely, if ‖ŷn‖∞ = 1 and x̂ ŷn → 0, then

d(x) ≤ ‖xyn‖
‖yn‖

≤ ‖x̂ ŷn‖∞
c‖ŷn‖∞

=
1
c
‖x̂ ŷn‖∞ → 0.

Consequently, x ∈ A is a topological divisor of zero in A if and only if x̂ is a
topological divisor of zero in Γ (A). Now, by Corollary 3.4.5, x̂ is a topological
divisor of zero in Γ (A) precisely when ϕ(x) = x̂(ϕ) = 0 for some ϕ ∈ ∂( ̂A) =
∂(A). �	



172 3 Functional Calculus, Shilov Boundary, and Applications

The next theorem characterises topological divisors of zero in terms of
noninvertibility in all superalgebras.

Theorem 3.4.7. Let A be a commutative Banach algebra with identity e. For
x ∈ A the following conditions are equivalent.

(i) x is a topological divisor of zero.
(ii) If B is any unital commutative Banach algebra and j is an isometric

isomorphism from A into B with j(e) = eB, where eB denotes the identity
of B, then j(x) is not invertible in B.

Proof. The implication (i) ⇒ (ii) is simple. In fact, let x be a topological zero
divisor in A. Then, since j is isometric, j(x) is a topological divisor of zero in
B and hence j(x) is not invertible in B by Remark 3.4.3.

Now, suppose that (ii) holds and that nevertheless x fails to be a topo-
logical divisor of zero in A. Then d(x) > 0, and replacing x with d(x)−1x, we
can assume that d(x) ≥ 1 and hence ‖xz‖ ≥ ‖z‖ for all z ∈ A. Let C denote
the linear space of all formal power series

x̃(t) =
∞
∑

n=0

xntn, xn ∈ A,

n
∑

n=0

‖xn‖ < ∞.

Then C is an algebra because
( ∞
∑

n=0

xntn

)( ∞
∑

n=0

yntn

)

=
∞
∑

n=0

(

∑

k+l=n

xkyl

)

tn

and
∞
∑

n=0

∥

∥

∥

∥

∥

∑

k+l=n

xkyl

∥

∥

∥

∥

∥

≤
∞
∑

k=0

‖xk‖ ·
∞
∑

l=0

‖yl‖ < ∞.

Thus the norm
∥

∥

∥

∥

∥

∞
∑

n=0

xntn

∥

∥

∥

∥

∥

=
∞
∑

n=0

‖xn‖

turns C into a commutative normed algebra. It can be easily verified that C
is complete. Actually, as a linear space, C is isometrically isomorphic to the
Banach space l1(N0, A).

Let J be the ideal J = (e − xt)C of C, I the closure of J in C, and
B = C/I. We now identify an element y of A with the constant function
t → y and let j : A → B denote the mapping y → y + I. It is clear that
j is an algebra homomorphism. Moreover, j(e) = e + I, the identity of B,
and j is norm decreasing. To show that j is actually isometric, let y ∈ A and
∑∞

n=0 zntn ∈ C. Then, using that ‖xz‖ ≥ ‖z‖ for all z ∈ A, we get
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∥

∥

∥

∥

∥

y − (e − xt)
∞
∑

n=0

zntn

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

y − z0 −
∞
∑

n=1

zntn + x

∞
∑

n=0

zntn+1

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

y − z0 −
∞
∑

n=1

(zn − xzn−1)tn
∥

∥

∥

∥

∥

= ‖y − z0‖ +
∞
∑

n=1

‖zn − xzn−1‖

≥ ‖y − z0‖ +
∞
∑

n=1

(‖xzn−1‖ − ‖zn‖)

≥ ‖y − z0‖ +
∞
∑

n=1

(‖zn−1‖ − ‖zn‖)

= ‖y − z0‖ + ‖z0‖
≥ ‖y‖.

This proves that ‖j(y)‖ ≥ ‖y‖.
Finally, j(x) is invertible in B since e − xt ∈ I and hence

(x + I)(et + I) = xt + I = e + I.

This contradicts hypothesis (ii). Thus (ii) ⇒ (i). �	

Corollary 3.4.8. Let A be a commutative unital Banach algebra and let ϕ ∈
∂(A). Then every element of kerϕ is a topological divisor of zero.

Proof. We show that every x ∈ kerϕ satisfies condition (ii) of Theorem 3.4.7.
Let B be any unital commutative Banach algebra such that there exists an
isometric isomorphism j from A into B with j(e) = eB. Since ϕ ∈ ∂(A), by
Theorem 3.3.9 there exists ψ ∈ Δ(B) such that ψ(j(x)) = ϕ(x) for all x ∈ A.
Thus j(x) ∈ kerψ and hence j(x) is not invertible in B. By Theorem 3.4.7, x
is a topological divisor of zero in A. �	

Corollary 3.4.8 is considerably improved later (Theorem 3.4.11) to the
effect that kerϕ even consists of joint topological zero divisors.

Remark 3.4.9. Let A be a commutative Banach algebra with identity e and
let ϕ ∈ Δ(A). Suppose that kerϕ consists of joint topological zero divisors.
Let B be a commutative unital Banach algebra containing A. Then ϕ extends
to some ψ ∈ Δ(B). Towards a contradiction, assume that no such extension
ψ exists. Then it can be shown exactly as in the proof of Theorem 3.3.9 that
there exist a1, . . . , an ∈ kerϕ and b1, . . . , bn ∈ B such that e =

∑n
j=1 ajbj .

Because d(a1, . . . , an) = 0, it follows that

d(a1b1, . . . , anbn) = inf

{

n
∑

j=1

‖ajbjy‖ : y ∈ B, ‖y‖ = 1

}
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≤ d(a1, . . . , an) max
1≤j≤n

‖bj‖

= 0.

On the other hand, since
∑n

j=1 ajbj = e,

1 = inf

{∥

∥

∥

∥

∥

n
∑

j=1

ajbjy

∥

∥

∥

∥

∥

: y ∈ A, ‖y‖ = 1

}

≤ d(a1b1, . . . , anbn).

This contradiction shows that ϕ extends to some ψ ∈ Δ(B).

For uniform algebras elements of the Shilov boundary can be characterised
in terms of topological divisors of zero as follows.

Theorem 3.4.10. Let X be a compact Hausdorff space, A a uniform algebra
on X, and ϕ ∈ Δ(A). Then ϕ belongs to ∂(A) if and only if kerϕ consists of
joint topological zero divisors.

Proof. Let ϕ ∈ ∂(A) and f1, . . . , fn ∈ kerϕ. Since ϕ ∈ ∂(A), ϕ = ϕx for some
x ∈ X . Given ε > 0, there exists an open neighbourhood V of x such that
|fj(y)| < ε for all y ∈ V and 1 ≤ j ≤ n. Since x ∈ ∂(A), there exists g ∈ A
such that ‖g‖∞ > ‖g|X\V ‖∞ (Corollary 3.3.4). Of course, we can assume that
‖g‖∞ = 1. Then ‖gm|X\V ‖∞ ≤ ε for all sufficiently large m ∈ N. It follows
that, for 1 ≤ j ≤ n,

|fj(y)gm(y)| ≤ ε‖fj‖∞
for all y ∈ X \ V and |fj(y)gm(y)| ≤ ε for all y ∈ V . Because ‖gm‖∞ = 1,
these estimates together show that

d(f1, . . . , fn) ≤ ε · max{1, ‖f1‖∞, . . . , ‖fn‖∞}.

So d(f1, . . . , fn) = 0 since ε > 0 was arbitrary.
Conversely, suppose that kerϕ consist of joint topological divisors of zero,

and let φ denote the isometric isomorphism f → f |∂(A) from A into C(∂(A)).
Then ϕ ◦ φ−1 ∈ Δ(φ(A)) and ker(ϕ ◦ φ−1) consists of joint topological
zero divisors. As shown in Remark 3.4.9, there exists ψ ∈ Δ(C(∂(A))) with
ψ|φ(A) = ϕ ◦ φ−1. Now ψ(g) = g(x) for some x ∈ ∂(A) and all g ∈ C(∂(A)).
It follows that

ϕ(f) = (ϕ ◦ φ−1)(φ(f)) = ψ(f |∂(A)) = f(x) = ϕx(f)

for all f ∈ A. So ϕ ∈ ∂(A). �	

Theorem 3.4.10 can be used to show that the ‘only if’ part of the asser-
tion of Theorem 3.4.10 remains true for arbitrary unital commutative Banach
algebras.

Theorem 3.4.11. Let A be a unital commutative Banach algebra and let ϕ ∈
∂(A). Then kerϕ consists of joint topological zero divisors.
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Proof. It suffices to show that given a1, . . . , aq ∈ A such that d(a1, . . . , aq) > 0,
there is no maximal ideal of A containing all of a1, . . . , aq and corresponding
to some point in ∂(A). Of course, we can assume d(a1, . . . , aq) ≥ 1; that is,
∑q

j=1 ‖ajy‖ ≥ ‖y‖ for all y ∈ A. We claim that

q
∑

j=1

r(ajy) ≥ r(y)

for all y ∈ A. To verify this turns out to be quite intricate.
Let B denote the algebra of all formal power series

x̃(t1, . . . , tq) =
∑

xn1,...,nq t
n1
1 · . . . · tnq

q

in q variables t1, . . . , tq, where summation extends over all (n1, . . . , nq) ∈ N
q
0,

xn1,...,nq ∈ A and
∑

‖xn1,...,nq‖ < ∞. Recall that multiplication in B is given
by
∑

xn1,...,nq t
n1
1 · . . . · tnq

q ·
∑

ym1,...,mq t
m1
1 · . . . · tmq

q =
∑

zp1,...,pq t
p1
1 · . . . · tpq

q ,

where, for (p1, . . . , pq) ∈ N
q
0,

zp1,...,pq =
∑

nj+mj=pj

1≤j≤q

xn1,...,nqym1,...,mq .

It is not difficult to check (compare the proof of Theorem 3.4.7 in the case
q = 1) that B, equipped with the norm

‖x̃‖ =
∑

‖xn1,...,nq‖,

becomes a commutative Banach algebra. The map

φ : x → x̃(t1, . . . , tq) = x

is an isometric isomorphism from A into B. Using φ, we identify A with φ(A).
Let

z =
q
∑

j=1

ajtj ∈ B.

We prove by induction that ‖zky‖ ≥ ‖y‖ for all y ∈ A and k ∈ N. Clearly,

‖zy‖ =

∥

∥

∥

∥

∥

∥

q
∑

j=1

(ajy)tj

∥

∥

∥

∥

∥

∥

=
q
∑

j=1

‖ajy‖ ≥ ‖y‖

by assumption. For the inductive step, suppose that ‖zk−1y‖ ≥ ‖y‖ for all y
and note that
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zk−1 =
∑

n1+...+nq=k−1

cn1,...,nqa
n1
1 · . . . · anq

q tn1
1 · . . . · tnq

q ,

where cn1,...,nq > 0. For any y ∈ A,
∥

∥zk−1y
∥

∥ =
∑

n1+...+nq=k−1

cn1,...,nq‖an1
1 · . . . · anq

q y‖.

This implies

‖zky‖ =

∥

∥

∥

∥

∥

z ·
∑

n1+...+nq=k−1

cn1,...,nqa
n1
1 · . . . · anq

q tn1
1 · . . . · tnq

q

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

q
∑

j=1

∑

n1+...+nq=k−1

cn1,...,nqa
n1
1 · . . . · anj+1

j · . . . · anq
q y tn1

1 · . . . · tnq
q

∥

∥

∥

∥

∥

=
∑

n1+...+nq=k−1

cn1,...,nq

⎛

⎝

q
∑

j=1

‖aja
n1
1 · . . . · anq

q y‖

⎞

⎠

≥
∑

n1+...+nq=k−1

cn1,...,nq‖an1
1 · . . . · anq

q y‖

= ‖zk−1y‖.

Thus, the inductive hypothesis shows that ‖zky‖ ≥ ‖y‖. Replacing y with yk,
we get

‖(zy)k‖1/k ≥ ‖yk‖1/k

for all y ∈ A and k ∈ N and hence r(zy) ≥ r(y) for all y ∈ A. Using that
the spectral radius is subadditive and submultiplicative and that r(tj) = 1,
1 ≤ j ≤ q, we obtain

r(y) ≤ r(zy) = r

⎛

⎝

q
∑

j=1

ajytj

⎞

⎠

≤
q
∑

j=1

r(ajytj) ≤
q
∑

j=1

r(ajy)r(tj)

=
q
∑

j=1

r(ajy)

for all y ∈ A. This establishes the above claim.
With Γ : A → C(Δ(A)), y → ŷ denoting the Gelfand homomorphism, we

can reformulate what we have shown so far by

q
∑

j=1

‖âj ŷ‖∞ =
q
∑

j=1

r(ajy) ≥ r(y) = ‖ŷ‖∞
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for all y ∈ A; that is, d(â1, . . . , âq) ≥ 1.
Let C denote the closure of Γ (A) in C(Δ(A)). Then, by Theorem 3.4.10,

the functions â1, . . . , âq cannot simultaneously belong to kerψ for any ψ ∈
∂(C). Now, there is a continuous bijection ϕ → ϕ̃ between Δ(A) and Δ(C)
satisfying ϕ̃(â) = ϕ(a) for all a ∈ A. In addition, since Δ(A) is compact, this
bijection is a homeomorphism and maps ∂(A) onto ∂(C) (Remark 3.3.7). It
follows that none of the ideals kerϕ, ϕ ∈ ∂(A), can contain all of a1, . . . , aq.

This finishes the proof of the theorem. �	

From Theorem 3.3.9 we know that if B is a commutative Banach algebra
with identity e and A is a closed subalgebra of B containing e, then every
ϕ ∈ ∂(A) extends to some ϕ̃ ∈ Δ(B).

We conclude this section by showing that combining Theorem 3.3.9 and
Theorem 3.4.10 leads to a major improvement in that actually such an ex-
tension ϕ̃ can be found in ∂(B). In preparation for this, we need a technical
lemma.

Lemma 3.4.12. Let A be a commutative normed algebra and let M be a
subset of A consisting of joint topological divisors of zero. Then the closed
ideal of A generated by M also consists of joint topological divisors of zero.

Proof. Let I be the ideal generated by M , so that

I =

⎧

⎨

⎩

n
∑

j=1

xjyj : xj ∈ M, yj ∈ A, n ∈ N

⎫

⎬

⎭

.

Let a1, . . . , am ∈ I and, for i = 1, . . . , m, write ai =
∑n

j=1 xijyij , where
xij ∈ M and yij ∈ A. Let

d = d(x11, . . . , x1n, x21, . . . , x2n, . . . , xm1, . . . xmn).

Then

d(a1, . . . , am) = inf
‖y‖=1

m
∑

i=1

∥

∥

∥

∥

∥

n
∑

j=1

xijyijy

∥

∥

∥

∥

∥

≤ inf
‖y‖=1

m
∑

i=1

n
∑

j=1

‖xijyijy‖

≤ d · max{‖yijy‖ : 1 ≤ i ≤ m, 1 ≤ j ≤ n, ‖y‖ = 1}
= 0.

Now, given a1, . . . , am ∈ I and ε > 0, there exist b1, . . . , bm ∈ I such that
‖aj − bj‖ ≤ ε for j = 1, . . . , m and an element y of A with ‖y‖ = 1 such that
∑m

j=1 ‖bjy‖ ≤ ε. It follows that

m
∑

j=1

‖ajy‖ ≤
m
∑

j=1

(‖aj − bj‖ + ‖bjy‖) ≤ (m + 1)ε.

Because ε > 0 was arbitrary, we conclude that d(a1, . . . , am) = 0. �	
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Theorem 3.4.13. Let B be a commutative Banach algebra with identity e
and let A be a closed subalgebra of B containing e. Then every ϕ ∈ ∂(A)
extends to some ϕ̃ ∈ ∂(B).

Proof. Let Γ : B → C(Δ(B)), x → x̂ denote the Gelfand homomorphism
of B and let CA and CB be the closure of Γ (A) and of Γ (B) in C(Δ(B)),
respectively.

For ϕ ∈ ∂(A), define ϕ̂ : Γ (A) → C by ϕ̂(x̂) = ϕ(x) for x ∈ A. By Theorem
3.3.9 there exists ψ ∈ Δ(B) such that ψ|A = ϕ. Thus

|ϕ̂(x̂)| = |ϕ(x)| = |ψ(x)| ≤ ‖x̂‖∞
for all x ∈ A. Hence ϕ̂ extends uniquely to some ε(ϕ) ∈ Δ(CA), and the map
ε : ϕ → ε(ϕ) is an embedding of ∂(A) into Δ(CA). Now, every boundary of
Γ (A) is a boundary for CA. So ε(∂(A)) is a boundary for CA and hence equals
∂(CA).

Fix ϕ ∈ ∂(A). By Theorem 3.4.10, ker ε(ϕ) consists of joint topological
zero divisors. Let I be the ideal of CB generated by ker ε(ϕ) ⊆ CA ⊆ CB .
By Lemma 3.4.12, I consists of joint topological zero divisors. Let ψ → ̂ψ be
the bijection between Δ(B) and Δ(CB) given by ̂ψ(ŷ) = ψ(y) for all y ∈ B.
Recall that this maps ∂(B) onto ∂(CB).

Finally, let ψ ∈ Δ(B) such that ψ|A = ϕ. Then I ⊆ ker ̂ψ because other-
wise there exist x ∈ kerϕ and y ∈ B such that x̂ ŷ �∈ ker ̂ψ, which contradicts

̂ψ(x̂ ŷ) = ψ(x)ψ(y) = ϕ(x)ψ(y) = 0.

Thus ker ̂ψ consists of joint topological zero divisors. Since CB is a uniform
algebra, by Theorem 3.4.10 ̂ψ belongs to the Shilov boundary of CB, and this
implies that ψ ∈ ∂(B), as desired. �	

3.5 Shilov’s idempotent theorem and applications

Our concern in this section is the following celebrated idempotent theorem
due to Shilov. Recall that an element a of an algebra A is called an idempotent
if it satisfies a2 = a.

Theorem 3.5.1. Let A be a commutative Banach algebra and let C be a com-
pact open subset of Δ(A). Then there exists an idempotent a in A such that
â equals the characteristic function of C.

Shilov’s idempotent theorem is not only a beautiful result on its own but
in turn admits a variety of important applications. Most notably, it allows
us to show that a semisimple commutative Banach algebra with compact
structure space is unital. Recall that we have already seen special cases in
earlier sections. Unfortunately, no proof of Theorem 3.5.1 is known which
does not require the use of some kind of multivariable holomorphic functional
calculus.
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Lemma 3.5.2. Let A be a commutative Banach algebra and let ϕ1 and ϕ2 be
distinct elements of Δ(A). Then there exists x ∈ A such that ϕ1(x) = 1 and
ϕ2(x) = 0.

Proof. What follows is a standard argument which is also used to prove the
classical Stone–Weierstrass theorem. However, we include the proof for the
reader’s convenience.

The set of Gelfand transforms strongly separates the points of Δ(A).
Therefore there exist elements a1, a2, and b of A such that ϕ1(a1) �=
0, ϕ2(a2) �= 0, and ϕ1(b) �= ϕ2(b). Let cj = (1/ϕj(aj))aj for j = 1, 2, and
let c = c1 + c2 − c1c2 ∈ A. Then

ϕj(c) = ϕj(c1) + ϕj(c2) − ϕj(c1)ϕj(c2) = 1,

j = 1, 2. Let

x =
1

ϕ1(b) − ϕ2(b)
(

b − ϕ2(b)c
)

∈ A.

Then, because ϕ1(c) = ϕ2(c) = 1,

ϕ1(x) =
1

ϕ1(b) − ϕ2(b)
(

ϕ1(b) − ϕ2(b)ϕ1(c)
)

= 1

and
ϕ2(x) =

1
ϕ1(b) − ϕ2(b)

(

ϕ2(b) − ϕ2(b)ϕ2(c)
)

= 0.

So x has the required properties. �	

Proposition 3.5.3. Let A be a unital commutative Banach algebra and let
U1 and U2 be disjoint open subsets of Δ(A) such that Δ(A) = U1 ∪ U2. Then
there exists x ∈ A such that x̂|U1 = 0 and x̂|U2 = 1.

Proof. Given ϕ ∈ U1 and ψ ∈ U2, by Lemma 3.5.2 there exists aϕ,ψ ∈ A such
that ϕ(aϕ,ψ) = 0 and ψ(aϕ,ψ) = 1. Let

Vϕ,ψ =
{

σ ∈ U1 : |σ(aϕ,ψ)| <
1
2

}

and Wϕ,ψ =
{

τ ∈ U2 : |τ(aϕ,ψ)| >
1
2

}

.

These sets are open neighbourhoods of ϕ and ψ, respectively, and Vϕ,ψ ⊆ U1

and Wϕ,ψ ⊆ U2. Now, fix ψ ∈ U2. Then, since U1 is open and compact, there
exists a finite subset Eψ of U1 such that

U1 =
⋃

ϕ∈Eψ

Vϕ,ψ.

Thus, if σ ∈ U1, then |σ(aϕ,ψ)| < 1
2 for at least one ϕ ∈ Eψ . Let

Wψ =
⋂

ϕ∈Eψ

Wϕ,ψ,
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which is an open neighbourhood of ψ in U2. Since U2 is compact, there exist
ψ1, . . . , ψm ∈ U2 such that U2 =

⋃m
j=1 Wψj . Now, consider the finite subset

M = {aϕ,ψj : 1 ≤ j ≤ m, ϕ ∈ Eψj}

of A and enumerate M , say M = {x1, . . . , xr}. Let

Cj = {(ϕ(x1), . . . , ϕ(xr)) : ϕ ∈ Uj},

j = 1, 2. Then C1 and C2 are compact and, since U1 ∪ U2 = Δ(A),

C1 ∪ C2 = σA(x1, . . . , xr).

Assume C1 ∩ C2 �= ∅. Then there exist σ ∈ U1 and τ ∈ U2 such that

σ(aϕ,ψj ) = τ(aϕ,ψj )

for each 1 ≤ j ≤ m and all ϕ ∈ Eψj . Now, τ ∈ Wψj for some j and then
σ ∈ Vϕ,ψj for some ϕ ∈ Eψj . By the definition of Wψj , τ ∈ Wϕ,ψj and hence

|σ(aϕ,ψj )| <
1
2

and |τ(aϕ,ψj )| >
1
2
,

which is impossible. Thus C1 and C2 are disjoint compact subsets of Cr, and
hence we can find disjoint open neighbourhoods W1 and W2 of C1 and C2 in
Cr, respectively.

Define f : W1 ∪ W2 → C by f |W1 = 0 and f |W2 = 1. Then f is a
holomorphic function on the neighbourhood W1 ∪ W2 of σA(x1, . . . , xr). By
Theorem 3.1.10, there exists x ∈ A such that

x̂(ϕ) = f(ϕ(x1), . . . , ϕ(xr))

for all ϕ ∈ Δ(A). It follows that x̂(ϕ) = 0 for all ϕ ∈ U1 and x̂(ϕ) = 1 for all
ϕ ∈ U2. �	

When A is semisimple, the element x of A in the preceding proposition is
an idempotent because ̂x2 = x̂. Thus Shilov’s idempotent theorem has been
established so far for semisimple unital commutative Banach algebras. We
now continue with a construction which allows us to drop the hypothesis that
A be semisimple.

Lemma 3.5.4. Let A be a commutative Banach algebra with identity e and
let b ∈ A be such that ̂b2 = ̂b. Then there exists a ∈ A such that â = ̂b and
a2 = a.

Proof. Recall that for any x ∈ A the geometric series
∑∞

n=0 xn converges in A
whenever r(x) < 1. Let x = 4(b2 − b). Then x̂ = 0 by hypothesis and hence x

is in the radical of A and therefore r(x) = 0. Since
∣

∣

∣

(−1/2
n

)

∣

∣

∣ ≤ 1 for all n ∈ N0,
the series
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∞
∑

n=0

(

−1/2
n

)

xn

converges in A. For the obvious reason, we denote this element by (e+x)−1/2.
We claim that

(e + x)−1/2(e + x)−1/2(e + x) = e,

a formula the reader will expect. Indeed, using the well-known equation

∑

k+l=m

(

−1/2
k

)(

−1/2
l

)

= (−1)m

for m ∈ N0, we get

(

(e + x)−1/2
)2

(e + x) = (e + x)
∞
∑

n=0

(

−1/2
n

)

xn ·
∞
∑

m=0

(

−1/2
m

)

xm

= (e + x)
∞
∑

m=0

(

∑

k+l=m

(

−1/2
k

)(

−1/2
l

)

)

xm

= (e + x)
∞
∑

m=0

(−1)mxm

= e +
∞
∑

m=1

(−1)mxm +
∞
∑

m=0

(−1)mxm+1

= e +
∞
∑

m=0

(

(−1)m+1 + (−1)m
)

xm+1

= e.

Thus
(

(e + x)−1/2
)2

= (e + x)−1, and setting

a =
(

b − 1
2
e

)

(e + x)−1/2 +
1
2
e ,

it follows that

a(a − e) =
(

b − 1
2
e

)2
(

(e + x)−1/2
)2

− 1
4
e

= (e + x)−1

(

b2 − b +
1
4
e

)

− 1
4
e

= 0.

Hence a is an idempotent, and it only remains to verify that â = ̂b. To that
end, let y =

(

b − 1
2e
)
∑∞

n=1

(−1/2
n

)

xn and note that

a =
(

b − 1
2
e

)

(

e +
∞
∑

n=1

(

−1/2
n

)

xn

)

+
1
2
e = b + y.
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Now, y ∈ rad(A) because x ∈ rad(A) and rad(A) is a closed ideal. Thus ŷ = 0
and hence â = ̂b. �	

Lemma 3.5.4 completes the proof of Theorem 3.5.1 when A is unital. Now,
assume that A does not have an identity and consider the unitisation Ae of
A. Embedding Δ(A) into Δ(Ae) as usual, C is still an open and closed set.
Thus, there is an idempotent u in Ae such that û|C = 1 and û|Δ(A)\C = 0.
Because û(ϕ∞) = 0, u is in A.

We next present a number of applications of Shilov’s idempotent theorem.
The first one has been announced several times.

Theorem 3.5.5. Let A be a semisimple commutative Banach algebra. If Δ(A)
is compact, then A has an identity.

Proof. Since Δ(A) is compact, by Theorem 3.5.1 there exists e ∈ A such that
ê = 1 on Δ(A). It follows that x̂e − x(ϕ) = x̂(ϕ)ê(ϕ)− x̂(ϕ) = 0 for all x ∈ A
and ϕ ∈ Δ(A). Since A is semisimple, we conclude that xe − x = 0 for all
x ∈ A, whence e is an identity for A. �	

Later (Corollary 4.2.11) we give a much simpler proof (one which does not
require Shilov’s idempotent theorem) of Theorem 3.5.5 for so-called regular
semisimple commutative Banach algebras.

Corollary 3.5.6. Let A be a commutative Banach algebra and suppose that
Δ(A) is totally disconnected. Then ̂A = {â : a ∈ A} is dense in C0(Δ(A)).

Proof. Let f ∈ C0(Δ(A)) and ε > 0 be given. Because f vanishes at infinity
and every point of Δ(A) has a neighbourhood basis of compact open sets,
there exists a compact open subset K of Δ(A) such that |f(ϕ)| < ε for all
ϕ ∈ Δ(A) \ K. Now, K can be written as a disjoint union of compact open
sets E1, . . . , Er such that |f(ϕ) − f(ψ)| < ε for all ϕ, ψ ∈ Ej , 1 ≤ j ≤ r. So
there exist c1, . . . , cr ∈ C with the property that the function g =

∑r
j=1 cj1Ej

satisfies |f(ϕ)−g(ϕ)| < ε for all ϕ ∈ K. By Shilov’s idempotent theorem, there
exist aj ∈ A, 1 ≤ j ≤ r, so that âj = 1Ej . For the element a =

∑r
j=1 cjaj of

A it follows that ‖â − f‖∞ < ε. Hence ̂A is dense in C0(Δ(A)). �	

As a final application of the Shilov idempotent theorem we now investigate
the relation between coverings of Δ(A) through disjoint open subsets and
decomposition of A into the direct sum of ideals. We start with the more
general situation of not necessarily finite coverings.

Theorem 3.5.7. Let A be a nonunital commutative Banach algebra and let
Δ(A) =

⋃

λ∈Λ Fλ be a decomposition of Δ(A) into open and compact subsets
Fλ, λ ∈ Λ. Then there exists a family of closed ideals Iλ, λ ∈ Λ, with the
following properties.

(i) Δ(Iλ) = Fλ for each λ.
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(ii) Iλ ∩
(

∑

μ∈Λ
μ�=λ

Iμ

)

⊆ rad(A) for each λ.

(iii)
∑

λ∈Λ Iλ is dense in A provided that every proper closed ideal of A is
contained in a maximal modular ideal.

Proof. By the idempotent theorem, for each λ ∈ Λ, there exists an idempotent
uλ in A such that

ûλ|Fλ
= 1 and ûλ|Δ(A)\Fλ

= 0.

Let Iλ = Auλ. Then Iλ is an ideal, and Iλ is closed in A because if (xn)n ⊆ Iλ

and xn → x in A, then xn = xnuλ → xuλ and hence x = xuλ ∈ Iλ.
To show (i), recall that

Δ(Iλ) = Δ(A) \ h(Iλ) = {ϕ ∈ Δ(A) : ϕ(x) �= 0 for some x ∈ Iλ}.

Now, if ϕ(x) �= 0 and x = yuλ, y ∈ A, then ϕ(uλ) �= 0. Thus Δ(Iλ) ⊆ Fλ.
Conversely, if ϕ ∈ Fλ then ϕ(uλ) �= 0 and hence ϕ �∈ h(Iλ).

For (ii), fix λ and let J =
∑

μ�=λ Iμ and D = Iλ ∩ J . We have to verify
that D ⊆ rad(A), equivalently, that h(D) = Δ(A). Towards a contradiction,
suppose that there exists ϕ ∈ Δ(A) \ h(D) and choose x ∈ D with ϕ(x) �= 0.
Since x ∈ Iλ, x = xuλ and hence ϕ(uλ) �= 0. Thus ϕ ∈ Fλ by (i). We show
that also ϕ ∈ Fμ for some μ ∈ Λ, μ �= λ. Since x ∈ J, x can be written as a
sum x =

∑n
j=1 cjxj , where xj ∈ Iμj , μ1, . . . , μn ∈ Λ and μj �= λ for all j. It

follows that, since xj = xjuλj ,

0 �= ϕ(x) =
n
∑

j=1

cjϕ(xj) =
n
∑

j=1

cjϕ(xj)ϕ(uλj ),

and therefore ϕ(uλj ) �= 0 for some j, so that ϕ ∈ Fλj . This contradicts the
fact that Fλ ∩ Fμ = ∅ for μ �= λ.

(iii) Because Δ(Iλ) = Fλ for all λ and Δ(A) =
⋃

λ∈Λ Fλ, no element of
Δ(A) annihilates

∑

λ∈Λ Iλ and hence this ideal is dense in A by hypothesis.
�	

We continue with a converse to Theorem 3.5.7.

Theorem 3.5.8. Let A be a nonunital commutative Banach algebra and let
{Iλ : λ ∈ Λ} be a family of unital closed ideals of A satisfying property
(ii) of Theorem 3.5.7 and such that the ideal

∑

λ∈Λ Iλ is dense in A. Then
Δ(A) =

⋃

λ∈Λ Δ(Iλ) and the sets Δ(Iλ), λ ∈ Λ, are open and disjoint.

Proof. Of course, each Δ(Iλ) = Δ(A) \ h(Iλ) is open in Δ(A). Let λ, μ ∈ Λ
such that λ �= μ, and suppose that there exists ϕ ∈ Δ(Iλ) ∩ Δ(Iμ). Choose
a ∈ Iλ and b ∈ Iμ such that ϕ(a) �= 0 and ϕ(b) �= 0. Then ab ∈ Iλ ∩ Iμ and
Iλ ∩ Iμ ⊆ rad(A) by hypothesis. This contradicts ϕ(rad(A)) = {0}.

It remains to show that Δ(A) =
⋃

λ∈Λ Δ(Iλ). If ϕ ∈ Δ(A) and ϕ annihi-
lates all Iλ, then ϕ(

∑

λ∈Λ Iλ) = {0}. However, this is impossible because ϕ is
continuous and

∑

λ∈Λ Iλ is dense in A. �	
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Now we turn to finite coverings.

Theorem 3.5.9. Let A be a unital commutative Banach algebra.

(i) If Δ(A) is a disjoint union Δ(A) =
⋃m

j=1 Fj of open (and closed) subsets
Fj , then there exist unital closed ideals I1, . . . , Im of A such that A =
⊕m

j=1Ij and Δ(Ij) = Fj for j = 1, . . . , m.
(ii) Conversely, if A is the direct sum of closed ideals I1, . . . , Im, then the sets

Δ(Ij) are open and closed in Δ(A) and Δ(A) is the disjoint union of the
sets Δ(Ij), 1 ≤ j ≤ m.

Proof. A straightforward induction argument shows that for both (i) and (ii),
it suffices to consider the case m = 2.

(i) Since Δ(A) is compact, F1 and F2 are compact. By Shilov’s idempotent
theorem, there exists an idempotent e1 ∈ A such that ê1 = 1F1 . Let e denote
the identity of A and set e2 = e− e1. Then e2 is an idempotent and ê2 = 1F2 .
Let Ij = ejA for j = 1, 2. Then I1 and I2 are closed ideals of A and Δ(Ij) =
Fj , j = 1, 2 (compare Theorem 3.5.7). Note that e1e2 = 0 since

e1 + e2 = e = e2 = e2
1 + e2

2 + 2e1e1 = e1 + e2 + 2e1e2.

Thus, if x ∈ I1 ∩ I2, then x = xe2 = xe1e2 = 0. Hence I1 + I2 is the direct
sum of I1 and I2. Finally, for x ∈ A,

x = xe = xe1 + xe2 ∈ I1 + I2.

This finishes the proof of (i).
For (ii), as in the proof Theorem 3.5.8, it follows that Δ(A) = Δ(I1)∪Δ(I2)

and Δ(I1)∩Δ(I2) = ∅. Of course, Δ(I1) and Δ(I2) are open (and hence closed)
in Δ(A). �	

Corollary 3.5.10. Let A be a commutative Banach algebra.

(i) Suppose that Δ(A) is a disjoint union Δ(A) =
⋃m

j=1 Fj , where F1 is closed
and F2, . . . , Fm are compact. Then there exist closed ideals I1, . . . , Im of
A such that A = ⊕m

j=1Ij , Δ(Ij) = Fj for j = 1, . . . , m, and I2, . . . , Im are
unital.

(ii) Conversely, let I1, I2, . . . , Im be closed ideals of A such that A = ⊕m
j=1Ij

and I2, . . . , Im are unital. Then Δ(A) is the disjoint union of the closed
set Δ(I1) and the compact sets Δ(I2), . . . , Δ(Im).

Proof. To prove (i), in view of Theorem 3.5.9 we can assume that A does not
have an identity. Let Ae be the algebra obtained by adjoining an identity e
to A. Let E1 = F1 ∪ {ϕ∞} and Ej = Fj for j = 2, . . . , m. Then

Δ(Ae) = Δ(A) ∪ {ϕ∞} =
m
⋃

j=1

Ej ,
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a disjoint union of open and closed subsets. By Theorem 3.5.9, there exist
closed unital ideals J1, . . . , Jm of Ae, such that Ae = ⊕m

j=1Jj and Δ(Jj) = Ej ,
1 ≤ j ≤ m.

Notice first that Jj ⊆ A for 2 ≤ j ≤ m. Indeed, otherwise ϕ∞(x) �= 0 for
some x ∈ Jj and hence ϕ∞ ∈ Δ(Jj), which is impossible since Δ(Jj) ⊆ Δ(A).
Define closed ideals I1, . . . , Im of A by I1 = J1∩A and Ij = J, for j = 2, . . . , m.

We claim that Δ(I1) = F1. Since I1 ⊆ J1, we have Δ(I1) ⊆ Δ(J1) = E1.
But ϕ∞(I1) = {0}, whence Δ(I1) ⊆ E1 \ {ϕ∞} = F1. Conversely, let ϕ ∈
F1 ⊆ Δ(J1) and choose x ∈ J1 with ϕ(x) �= 0. Since ϕ ∈ Δ(A), there exists
y ∈ A such that ϕ(y) �= 0. It follows that xy ∈ J1 ∩ A = I1 and ϕ(xy) �= 0,
and hence ϕ ∈ Δ(I1).

It remains to show that A = ⊕m
j=1Ij . Given x ∈ A, there exist elements

x1 ∈ J1, . . . , xm ∈ Jm such that x = x1 + . . . + xm. Since x, x2, . . . , xm ∈ A,
it follows that x1 ∈ A ∩ J1 = I1. Thus A = I1 + . . . + Im. However, this sum
is direct. �	

3.6 Exercises

Exercise 3.6.1. Let u : T → C be a function of the form u(z)=
∑∞

n=−∞ αnzn,
where

∑∞
n=−∞ |αn| < ∞. Suppose that f is a function which is holomorphic

in a neighbourhood of the compact subset u(T) of C. Show that f ◦ u has a
representation of the form f ◦u(z) =

∑∞
n=−∞ βnzn, where

∑∞
n=−∞ |βn| < ∞.

Exercise 3.6.2. Let A be a commutative Banach algebra with identity e.
Apply the functional calculus for entire functions to establish the following
assertions.

(i) There exists no nonzero element x in rad(A), the radical of A, such
that expx = e.

(ii) exp(2πike) = e for all k ∈ Z.
(iii) If Δ(A) is connected and x ∈ A is such that expx = e, then x = 2πie

for some k ∈ Z.
(iv) If Δ(A) is not connected, then there exist x, y ∈ A such that expx =

exp y and x − y �∈ (2πiZ)e.

Exercise 3.6.3. Let A be a unital commutative Banach algebra and x ∈
A. Suppose that f is holomorphic in a neighbourhood of σA(x) and g is
holomorphic in some neighbourhood of σA(f(x)). Show that (g ◦ f)(x) =
g(f(x)).

Exercise 3.6.4. Let A be a commutative Banach algebra with identity e and
let a, b ∈ A. Suppose that exp a = exp b and â = ̂b. To prove that a = b,
proceed as follows.

(i) Let c = a − b ∈ rad(A) and show that
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c

(

e +
∞
∑

j=1

1
(j + 1)!

cj

)

= 0.

(ii) Show that the element

e +
∞
∑

j=1

1
(j + 1)!

cj

is invertible and conclude that c = 0.

Exercise 3.6.5. Let A be a commutative Banach algebra with identity e and
let Λ(A) denote the set of all ϕ ∈ Δ(A) with the property that given any
extension B of A, ϕ admits an extension to some element of Δ(B). Prove
that Λ(A) is closed in Δ(A).
(Hint: For each extension B of A, consider the restriction map ψ → ψ|A from
the set {ψ ∈ Δ(B) : ψ(e) = 1} to Δ(A).)

Exercise 3.6.6. Let A be a unital commutative Banach algebra which is gen-
erated by some element a. Show that the homeomorphism ϕ → ϕ(a) between
Δ(A) and σA(a) maps ∂(A) onto the topological boundary of σA(a).

Exercise 3.6.7. Let A be a commutative Banach algebra and C a compact
and open subset of Δ(A). Prove that C ∩ ∂(A) �= ∅.

Exercise 3.6.8. Let A be a unital commutative Banach algebra and a ∈ A.
Prove that â(Δ(A)) = â(∂(A)).
(Hint: Suppose there exists ϕ0 ∈ Δ(A) such that â(ϕ0) �∈ â(∂(A)). Choose a
polynomial p such that |p(â(ϕ0))| > |p(â(ϕ))| for all ϕ ∈ ∂(A) and consider
the element b = p(a) ∈ A.)

Exercise 3.6.9. Let A be a commutative Banach algebra and Ae = A ⊕ Ce
the unitisation of A. Show that ∂(Ae) = ∂(A)∪{ϕ∞}, where ϕ∞(a+λe) = λ
for a ∈ A and λ ∈ C.

Exercise 3.6.10. Let A be a commutative Banach algebra and I a closed
ideal of A. As usual, identify Δ(I) with Δ(A) \ h(I). Then

∂(I) = ∂(A) ∩ Δ(I).

To verify this, observe first that ∂(A) ∩ Δ(I) is a (closed) boundary for the
algebra ̂I = {ŷ : y ∈ I}, so that ∂(I) ⊆ ∂(A)∩Δ(I). To establish the converse
inclusion, exploit Corollary 3.3.4. Let ϕ ∈ ∂(A) ∩ Δ(I) and let V be an open
neighbourhood of ϕ in Δ(I). Then there exists x ∈ A such that

1 = ‖x̂|V ‖∞ < ‖x̂|Δ(A)\V ‖∞.

Choose y ∈ I with ŷ(ϕ) �= 0 and show that for sufficiently large n ∈ N, the
element yxn of I satisfies

‖̂yxn|V ‖∞ > ‖̂yxn|Δ(I)\V ‖∞.
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Exercise 3.6.11. Let I be a closed ideal of a commutative Banach algebra
A. In general, there is no relation between ∂(A/I) and ∂(A) ∩ h(I). Give an
example of a unital A and an ideal I such that ∂(A) ∩ h(I) = ∅.

Exercise 3.6.12. Let A be a commutative Banach algebra and let ϕ ∈ ∂(A).
Suppose that ϕ is an isolated point of ∂(A). Use Exercise 3.6.10 to show that
ϕ is an isolated point in Δ(A).

Exercise 3.6.13. Let X denote the solid cylinder D× [0, 1] ⊆ C×R, and let

A = {f ∈ C(X) : z → f(z, t) is holomorphic on D
◦ for each t ∈ [0, 1]}.

Show that ∂(A) = {(z, t) : |z| = 1, 0 ≤ t ≤ 1}. Find f ∈ A such that
f(∂(A)) �⊆ ∂(σA(f)).

Exercise 3.6.14. Let X be as in the preceding exercise and

B = {f ∈ C(X) : z → f(z, 1) is holomorphic on D
◦}.

Then ∂(B) = X.

Exercise 3.6.15. Let A be as in Exercise 3.6.13 and let f ∈ A be the function
f(z, t) = tz, z ∈ D, t ∈ [0, 1]. Prove that ∂(σA(f)) is a proper subset of
̂f(∂(A)). Thus the inclusion in Theorem 3.3.13 may well be proper.

Exercise 3.6.16. Let G be a bounded region in C whose boundary consists of
finitely many simply closed curves. Show that ∂(A(G)) equals the topological
boundary of G.

Exercise 3.6.17. Let A be the closed subalgebra of C(D) generated by P (D)
and the function z → z. Show that ∂(A) = D, but Δ(A) �= D.

Exercise 3.6.18. Show that ∂(A) = Δ(A) when A is either of the algebras
Lipα[0, 1] or Cn[0, 1].

Exercise 3.6.19. As in Exercise 2.12.61, let A ⊗u B be the uniform tensor
product of two uniform algebras A and B. Show that ∂(A⊗uB) = ∂(A)×∂(B).

Exercise 3.6.20. Let A be a uniform algebra. The set

S(A) = {l ∈ A∗ : ‖l‖ = l(1) = 1}

is called the set of states of A. Then S(A) is a w∗-compact convex subset of A∗

and hence, by the Krein-Milman theorem, it is the closed convex hull of the
set ex(S(A)) of its extreme points. The elements of ex(S(A)) are called pure
states. Show that the closure ex(S(A)) contains the Shilov boundary ∂(A).
Actually, one can prove that ∂(A) = ex(S(A)).
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Let X be a locally compact Hausdorff space and A a subalgebra of C0(X)
which strongly separates the points of X . A point x ∈ X is said to be a peak
point for A if there exists some f ∈ A such that |f(x)| = ‖f‖∞ = 1 and
|f(y)| < 1 for all y �= x. The set of all peak points for A is called the Bishop
boundary for A and denoted ρ(A).

Exercise 3.6.21. Let w ∈ D and consider the function f(z) = 1
2 (z + w), z ∈

D, to show that w is a peak point for the disc algebra A(D) if and only if
|w| = 1.

Exercise 3.6.22. Let X = D × D ⊆ C2 and A = P (X). The following asser-
tions (i) and (ii) show that

∂(A) = ρ(A) = {(z, w) ∈ X : |z| = |w| = 1}.

(i) Let f ∈ A. For z ∈ D define fz on D by fz(w) = f(z, w). Similarly, for
w ∈ D, define fw on D by fw(z) = f(z, w). Observe that fz, fw ∈ A(D) and
conclude that |f | attains its maximum on T × T.

(ii) Let (z0, w0) ∈ T × T. Show that (z0, w0) is a peak point for A by
considering the function f(z, w) = 1

4 (z + z0)(w + w0), (z, w) ∈ X .

It is worth pointing out that in the example of Exercise 3.6.22 the Shilov
boundary is much smaller than the topological boundary of Δ(A) = D × D,
which equals ∂(D) = (D × T) ∪ (T × D).

Exercise 3.6.23. Let X = {(z, t) : z ∈ D, t ∈ [−1, 1]} and let A be the
algebra consisting of all continuous functions f on X with the property that
z → f(z, 0) is holomorphic on the open unit disc. Prove that a point (z, t) ∈ X
is a peak point for A if and only if either t �= 0 or t = 0 and |z| = 1. Note that
the Shilov boundary of A equals X .

Exercise 3.6.24. Let X = {z = (z1, . . . , zn) ∈ Cn : ‖z‖2 =
∑n

j=1 |zj|2 ≤ 1},
the closed unit ball in C

n (n ∈ N). Show that

ρ(P (X)) = ∂(P (X)) = {z ∈ X : ‖z‖ = 1}.

Exercise 3.6.25. Let X be a compact Hausdorff space and x0 ∈ X , and
suppose that x0 has a countable neighbourhood basis. Prove that x0 is a peak
point for C(X) by finding a continuous function f : X → [0, 1] such that
f−1(1) = {x0}.

Exercise 3.6.26. Let A = {f ∈ A(D) : f(0) = f(1)} ⊆ A(D).
(i) Show that Δ(A) is homeomorphic to D\{0}, where D\{0} is identified,

as a set and topologically, with the quotient space D/ ∼ of D which is obtained
by the equivalence relation z ∼ w if and only if z = 0 and w = 1 or z = 1 and
w = 0.

(ii) Show that ∂(A) = T and ρ(A) = T \ {1}.
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Exercise 3.6.27. Consider functions of the form δ0 + zδ1 ∈ l1(Z), z ∈ T,
to show that every point of T = Δ(l1(Z)) is a peak point for l1(Z). Thus
∂(l1(Z)) = Δ(l1(Z)).
(Remark: Later it follows from regularity of L1(G) (Theorem 4.4.14) that
∂(L1(G)) = Δ(L1(G)) for every locally compact Abelian group.)

Exercise 3.6.28. Prove that in the definition of a topological divisor of zero
(Definition 3.4.1) the condition ‖xn‖ = 1 may be replaced by ‖xn‖ ≥ δ for
some δ > 0.

Exercise 3.6.29. Let A be a unital, not necessarily commutative Banach
algebra which is not isomorphic to the complex number field. Conclude from
Corollary 3.4.8 and the Gelfand–Mazur theorem (Theorem 1.2.9) that A has
topological divisors of zero.

Exercise 3.6.30. Use Corollary 3.4.8 to show that a nonzero element of the
radical of a commutative Banach algebra is a topological divisor of zero.

Exercise 3.6.31. Let A be a commutative Banach algebra and let x be a
nonzero element of A which is not a divisor of zero. Prove that x is a topo-
logical divisor of zero if and only if xA �= xA.
(Hint: Consider the linear mapping Lx : y → xy of A.)

Exercise 3.6.32. Show that in Exercise 3.6.31, the assumption that x is not a
divisor of zero is essential. That is, find an example of a commutative Banach
algebra A and a zero divisor x in A such that xA �= xA.

Exercise 3.6.33. For k ∈ N, let gk ∈ L1(T) denote the function gk(z) = zk.
Let f ∈ L1(T) and compute ‖gk ∗ f‖1 to conclude that f is a topological zero
divisor.

Exercise 3.6.34. Let f : [0, 1] → C be a continuous function. Show directly,
without appealing to Corollary 3.4.5 or Corollary 3.4.6, that f is a topological
zero divisor in C[0, 1] if and only if f vanishes at some point of [0, 1].
(Hint: Suppose that 0 < t0 < 1 and that f(t0) = 0. For k ∈ N, consider the
tent function gk defined by

gk(t) =

⎧

⎪

⎨

⎪

⎩

1 + k(t − t0) for t0 − 1/k ≤ t ≤ t0,

1 − k(t − t0) for t0 ≤ t ≤ t0 + 1/k,

0 for |t − t0| ≥ 1/k.

Show that ‖gkf‖∞ → 0 as k → ∞.)

Exercise 3.6.35. Let A be a commutative Banach algebra such that Δ(A)
is finite. Show that there exist idempotents e1, . . . , en ∈ A with the following
properties:

(1) ej �= ek for j �= k, 1 ≤ j, k ≤ n.
(2) Every x ∈ A admits a representation x = y +

∑n
j=1 λjej , where

λ1, . . . , λn ∈ C and y ∈ rad(A).
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Exercise 3.6.36. Let A be a semisimple commutative Banach algebra. An
idempotent u of A is called minimal if for any other idempotent v of A, either
uv = 0 or uv = u. Show that the following conditions are equivalent.

(i) There exists a minimal idempotent in A.
(ii) There exists a compact and open connected component in Δ(A).

Exercise 3.6.37. Let A be a semisimple commutative Banach algebra and
suppose that Δ(A) is discrete and that the set of all a ∈ A such that â has
finite support is dense in A. Show that the set of all finite linear combinations
of idempotents in A is dense in A.

Exercise 3.6.38. Let X be a compact subset of Cn, n ∈ N. Use the Shilov
idempotent theorem to show that if X is connected, then so is the polynomial
convex hull of X . Does the converse also hold?

Exercise 3.6.39. Let X be a compact subset of Cn. Suppose that X is poly-
nomially convex and totally disconnected. Use Theorem 3.5.6 to show that
P (X) = C(X).

3.7 Notes and references

Most of the material covered in this chapter is the work of Shilov or at least
originated from it. The single-variable holomorphic functional calculus, as pre-
sented in Section 3.1, essentially amounts to the exploitation of Cauchy’s in-
tegral formula in one variable to define functions of Banach algebra elements
and is due to Gelfand [38]. The much more sophisticated several-variable
functional calculus, which of course requires Cauchy’s theory for holomorphic
functions in several-variables, was developed by Shilov [123] for finitely gen-
erated algebras and in the general case by Arens and Calderon [7]. We refer
the reader to, for example, [108, Chapter III], [126, Section 8], [99, Section
3.5], and [56]. The beautiful proof of Theorem 3.1.10 given here is taken from
[19, Section 20]. Proofs of Oka’s extension theorem can be found in [47] and
[137].

In Section 3.2 we have put together some of the more immediate applica-
tions of the one-variable functional calculus, notably those concerning G(A),
the group of invertible elements of a unital commutative Banach algebra A.
The realisation of the connected component of the identity of G(A) as exp A
(Theorem 3.2.6) is standard. The fact that G(A) is either connected or has
infinitely many connected components (Theorem 3.2.8) was shown by Lorch
[82]. Actually, Theorem 3.2.8 can be deduced from the following theorem. The
quotient group G(A)/ exp A is isomorphic to H1(Δ(A), Z), the first Čech co-
homology group of Δ(A) with integer coefficients. This result, which is one of
the most important ones on the subject, is referred to as the Arens-Royden
theorem as it was proved, independently, by Arens [6] and Royden [111].
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The existence of a smallest closed boundary ∂(A) (Theorem 3.3.2) was es-
tablished by Shilov (see [41, Section 24]). A proof which does not utilize Zorn’s
lemma is also available [126, Section 7]. It is worth pointing out that Shilov
introduced ∂(A), which is called the Shilov boundary, to determine which el-
ements of Δ(A) extend to elements of Δ(B) whenever B is any commutative
Banach algebra containing A as a closed subalgebra. Temporarily, call such an
element of Δ(A) extensible. Then Theorem 3.3.9, which is also due to Shilov,
combined with Lemma 4.4.5 [88] shows that the Shilov boundary is exactly
the set of all extensible elements of Δ(A).

The notion of a topological divisor of zero was introduced by Shilov [120]
who used the terminology generalised divisor of zero and was aware of the
connection with the extension problem. However, topological and joint topo-
logical divisors of zero have been studied by several authors and appear in
various contexts. Theorem 3.4.7, for instance, which identifies the topological
divisors of zero of a unital commutative Banach algebra as precisely those ele-
ments of A that are not invertible in any superalgebra of A, was shown, among
many other results, by Arens [4, 5]. If A is a uniform algebra on a compact
Hausdorff space, then ϕ ∈ Δ(A) belongs to ∂(A) if and only if kerϕ consists
of joint topological divisors of zero (Theorem 3.4.10), and we have seen in
Theorem 3.4.11 that the ‘only if’ part holds for arbitrary unital commutative
Banach algebras [142].

The Shilov idempotent theorem and its various important consequences
presented in Section 3.5, such as Theorem 3.5.5 and Theorem 3.5.9, are all
due to Shilov [123]. Unfortunately, it is not known how to prove the idempo-
tent theorem without recourse to the several-variable holomorphic functional
calculus, or at least some variant of it. An interesting approach was chosen in
[99, Section 3.5], utilising an implicit function theorem which in turn is also
based on the heavy machinery of several-variable complex analysis. The reader
who is especially interested in the topology of Δ(A), will appreciate Theorem
3.5.5, which is the ultimate solution to the question of whether compactness
of Δ(A) forces A to be unital.



4

Regularity and Related Properties

The main theme of this chapter is the concept of regularity, which plays a cen-
tral role in the study of the ideal structure of a commutative Banach algebra.
This concept originates from regularity of algebras of functions on locally com-
pact Hausdorff spaces, applied to the range of the Gelfand homomorphism.
The relevance of regularity of a commutative Banach algebra A for the ideal
theory is mainly due to the fact that it is equivalent to coincidence of the
Gelfand topology and the hull-kernel topology on Δ(A).

Accordingly, we start by introducing the hull-kernel topology in Section
4.1. In Section 4.2 we relate regularity to the hull-kernel topology and present
fundamental properties of regular commutative Banach algebras, such as nor-
mality and the existence of partitions of unity. In addition, we prove that
regularity is inherited by ideals and quotients, by the unitisation and by ten-
sor products. Every commutative Banach algebra A possesses a greatest closed
regular subalgebra, reg(A) (Section 4.3). This is used to show that if I is a
closed ideal of A, then A is regular if both I and A/I are regular. As an
example, reg(C0(X, A)) is determined.

In Section 4.4 we establish regularity of L1(G) for a locally compact
Abelian group G. This is one of the most profound results in commutative
harmonic analysis, and, as usual, the proof is based on the Plancherel theorem
which in turn is a consequence of the inversion formula. To keep our treatment
as self-contained as possible, we have included a proof of the inversion formula
which utilises the Gelfand theory of commutative C∗-algebras (Section 2.4).

Recently, certain properties weaker than regularity have been investigated.
These properties concern questions such as when, for a semisimple commu-
tative Banach algebra A, spectral radii, or spectra of elements of A remain
unchanged when embedding A into a larger algebra B, and also the problem
of extending elements of Δ(A) to elements of Δ(B). In Section 4.5 we discuss
most of the relevant results in this context that have been obtained. A related
property is the so-called unique uniform norm property which we address in
Section 4.6.
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The final section of this chapter is devoted to the study of Beurling algebras
L1(G, ω). In contrast to L1(G), Beurling algebras in general fail to be regular.
Somewhat surprisingly, L1(G, ω) turns out to be regular if it has the unique
uniform norm property. Our main objective, however, is to establish Domar’s
theorem which asserts that L1(G, ω) is regular whenever the weight ω is non-
quasianalytic.

4.1 The hull-kernel topology

Let A be a commutative Banach algebra. Recall that there is a bijection
between Δ(A), the set of all homomorphisms of A onto C, and Max(A), the
set of all maximal modular ideals in A, given by ϕ → ker ϕ. In this way
we always identify Δ(A) and Max(A). So far we only considered the Gelfand
topology on Δ(A). We now introduce a new topology on Δ(A) = Max(A), the
so-called hull-kernel topology, which is much more appropriate for studying
the ideal structure of A. In general, the hull-kernel topology is weaker than the
Gelfand topology, and we show soon (Theorem 4.2.3) that the two topologies
coincide if and only if Γ (A) = {x̂ : x ∈ A} is a regular algebra of functions on
Δ(A).

Definition 4.1.1. For E ⊆ Δ(A) = Max(A) the kernel of E, denoted by
k(E), is defined as

k(E) = {x ∈ A : ϕ(x) = 0 for all ϕ ∈ E} =
⋂

{M ∈ Max(A) : M ∈ E}

if E �= ∅, whereas k(∅) = A. For ϕ ∈ Δ(A) we write k(ϕ) instead of k({ϕ}) =
kerϕ. If B ⊆ A, then the hull h(B) of B is defined by

h(B) = {ϕ ∈ Δ(A) : B ⊆ k(ϕ)} = {M ∈ Max(A) : B ⊆ M}.

Also, for x ∈ A, we simply write h(x) instead of h({x}).

It is clear that k(E) is a closed ideal in A, and that h(B) is a closed subset
of Δ(A) since the functions x̂, x ∈ A, are continuous on Δ(A). We next list
some elementary properties of the formation of hulls and kernels.

Lemma 4.1.2. Let B, B1, and B2 be subsets of A and let E, E1, and E2 be
subsets of Δ(A). Then

(i) B1 ⊆ B2 =⇒ h(B1) ⊇ h(B2).
(ii) h(B) = h(B) and B ⊆ k(h(B)).
(iii) h(B) = h(k(h(B))).
(iv) E1 ⊆ E2 =⇒ k(E1) ⊇ k(E2).
(v) E ⊆ h(k(E)) and k(E) = k(h(k(E))).
(vi) h(k(E1 ∪ E2)) = h(k(E1)) ∪ h(k(E2)).
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Proof. (i), (ii), and (iv) are obvious from the definitions. We show the remain-
ing assertions.

(iii) If M ∈ h(k(h(B))) then M ⊇ k(h(B)) ⊇ B, so that M ∈ h(B).
Conversely, if ϕ ∈ Δ(A) is such that k(ϕ) �∈ h(k(h(B))), then ϕ(a) �= 0 for
some a ∈ k(h(B)) and hence ϕ �∈ h(B).

(v) E ⊆ h(k(E)) is clear, and therefore k(E) ⊇ k(h(k(E))) by (iv). On
the other hand, taking B = k(E) in (i), we get k(E) ⊆ k(h(k(E))).

(vi) First, h(k(E1)) ∪ h(k(E2)) ⊆ h(k(E1) ∩ k(E2)) = h(k(E1 ∪ E2)). For
the converse inclusion, let

ϕ ∈ h(k(E1 ∪ E2)) = h(k(E1) ∩ k(E2)) ⊆ h(k(E1)k(E2))

and assume that ϕ �∈ h(k(E2)). Choose a ∈ k(E2) with ϕ(a) �= 0. Then for all
x ∈ k(E1), ϕ(x)ϕ(a) = ϕ(xa) = 0. This implies that ϕ ∈ h(k(E1)). �	

Definition 4.1.3. Let A be a commutative Banach algebra. For E ⊆ Δ(A)
the hull-kernel closure E of E is defined to be E = h(k(E)). The correspon-
dence E → E, E ⊆ Δ(A), is a closure operation, that is, satisfies the following
conditions.

(a) E ⊆ E and E = E.
(b) E1 ∪ E2 = E1 ∪ E2.

Indeed, (b) is exactly property (vi) in Lemma 4.1.2, and by (v) E ⊆ h(k(E)) =
E and

E = h(k(h(k(E)))) = h(k(E)) = E,

so that (a) holds. Thus, there is a unique topology on Δ(A) such that, for
each subset E of Δ(A), E = h(k(E)) is the closure of E. This topology is
called the hull-kernel topology (hk-topology).

Example 4.1.4. (1) Let X be a locally compact Hausdorff space. Then the
hull-kernel topology on X = Δ(C0(X)) agrees with the given topology. In
fact, given a closed subset E of X and x0 ∈ X \E, by Urysohn’s lemma there
exists f ∈ C0(X) such that f(x0) �= 0 and f(x) = 0 for all x ∈ E. This shows
that E = h(k(E)), a hull-kernel closed set.

(2) The hull-kernel topology on D = Δ(A(D)) is genuinely weaker than
the usual topology on D. This follows from the fact that the set of zeros of a
nonzero holomorphic function in a region cannot have an accumulation point
within that region. Thus every hull-kernel closed subset of D has an at most
countable intersection with the open unit disc.

We continue with some basic properties of the hull-kernel topology, which
are used later.

Lemma 4.1.5. Let I be a closed ideal of A.
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(i) Let q : A → A/I denote the quotient homomorphism. The map ϕ → ϕ ◦ q
is a homeomorphism for the hull-kernel topologies between Δ(A/I) and
the closed subset h(I) of Δ(A).

(ii) The map ϕ → ϕ|I is a homeomorphism for the hull-kernel topologies
between the open subset Δ(A) \ h(I) of Δ(A) and Δ(I).

Proof. (i) The map φ : ϕ → ϕ ◦ q clearly is a bijection between Δ(A/I) and
h(I) ⊆ Δ(A). Now, for any subset E of Δ(A/I) and ϕ ∈ Δ(A/I), kerϕ ⊇
∩{kerψ : ψ ∈ E} if and only if

kerφ(ϕ) = q−1(kerϕ) ⊇ q−1
(

⋂

{kerψ : ψ ∈ E}
)

=
⋂

{q−1(kerψ) : ψ ∈ E} =
⋂

{kerφ(ψ) : ψ ∈ E}

=
⋂

{ker τ : τ ∈ φ(E)}.

Thus E is hull-kernel closed in Δ(A/I) if and only if φ(E) is hull-kernel closed
in h(I).

(ii) We have seen earlier that the map φ : ϕ → ϕ|I is a bijection between
Δ(A) \ h(I) and Δ(I). It is obvious that φ is continuous for the hull-kernel
topologies. Now let E be a hull-kernel closed subset of Δ(A) \ h(I) and let
ψ ∈ Δ(I) be such that

kerψ ⊇
⋂

{ker(ϕ|I) : ϕ ∈ E}.

We have to verify that

kerφ−1(ψ) ⊇
⋂

{kerφ−1(ϕ|I) : ϕ ∈ E} =
⋂

{kerϕ : ϕ ∈ E}.

However, if x ∈ kerϕ for all ϕ ∈ E, then xy ∈ ker(ϕ|I) for all ϕ ∈ E and
y ∈ I, whence ψ(x)ψ(y) = ψ(xy) = 0 for all y ∈ I. Since ψ(y) �= 0 for some
y ∈ I, we get ψ(x) = 0. So x ∈ kerφ−1(ψ), and the above inclusion holds. �	

Lemma 4.1.6. Let A be a commutative Banach algebra without identity and
let a ∈ A be such that â is continuous in the hull-kernel topology on Δ(A).
Then â is also continuous on Δ(Ae) with respect to the hull-kernel topology.

Proof. Recall that Δ(Ae) = Δ(A)∪ {ϕ∞}, where each ϕ ∈ Δ(A) is identified
with its canonical extension x + λe → ϕ(x) + λ, x ∈ A, λ ∈ C. In the sequel
we denote by h and k the hull and kernel operations with respect to A and
by he and ke those with respect to Ae. For any subset E of Δ(Ae), it follows
immediately from the definitions of hulls and kernels that

he(ke(E)) ⊆ h(k(E ∩ Δ(A))) ∪ {ϕ∞}.

Let F be a nonempty closed subset of C and E = {ϕ ∈ Δ(Ae) : ϕ(a) ∈ F}.
By the hypothesis on a, E ∩Δ(A) is hull-kernel closed in Δ(A). To show that
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E is hull-kernel closed in Δ(Ae), we have to distinguish the two cases 0 ∈ F
and 0 �∈ F . If 0 ∈ F and hence ϕ∞ ∈ E, the above inclusion gives

he(ke(E)) ⊆ (E ∩ Δ(A)) ∪ {ϕ∞} = E,

whence E is hull-kernel closed in Δ(Ae). If 0 �∈ F , then ϕ∞ �∈ E and therefore
E ⊆ Δ(A). Let δ = inf{|α| : α ∈ F}. Then δ > 0 and |ϕ(a)| ≥ δ for all ϕ ∈ E.
In particular, E is compact. Because E = Δ(A/k(E)) and â(ϕ) �= 0 for all
ϕ ∈ E, Theorem 3.2.1 applies and yields the existence of some b ∈ A such
that ϕ(b) = 1/ϕ(a) for all ϕ ∈ E. Now let

x = e − ab ∈ Ae.

Then x satisfies ϕ∞(x) = 1 and ϕ(x) = 0 for all ϕ ∈ E. So ϕ∞ �∈ he(ke(E)),
and hence

he(ke(E)) ⊆ h(k(E ∩ Δ(A))) = h(k(E)) = E.

This shows that E is also hull-kernel closed in Δ(Ae), as required. �	
Lemma 4.1.7. Let α be an algebra cross-norm on A ⊗ B such that α ≥
ε. Then the map ϕ ̂⊗αψ → (ϕ, ψ) from Δ(A ̂⊗αB) onto Δ(A) × Δ(B) is
continuous for the hull-kernel topology on Δ(A ̂⊗αB) and the product of the
hull-kernel topologies on Δ(A) × Δ(B).

Proof. Let E be a hull-kernel closed subset of Δ(A). We claim that the set
F = {ϕ ̂⊗αψ : ϕ ∈ E, ψ ∈ Δ(B)} is hull-kernel closed in Δ(A ̂⊗αB). We
have k(F ) ⊇ k(E) ̂⊗αB and hence F = h(k(F )) ⊆ h(k(E) ̂⊗αB) ⊆ F since
(ϕ ̂⊗αψ)(a ⊗ b) = 0 for all b ∈ B only when ϕ ∈ h(k(E)) = E.

Thus the projection from Δ(A ̂⊗αB) onto Δ(A) is hull-kernel continuous,
and similarly for Δ(A ̂⊗αB) → Δ(B). The statement of the lemma follows.

�	
Conversely, as the following example shows, the map (ϕ, ψ) → ϕ ̂⊗αψ is

not generally continuous for the hull-kernel topologies.

Example 4.1.8. Let D denote the closed unit disc, and let A = A(D) and
B = C(D). Then the map φ : (ϕ, ψ) → ϕ ̂⊗πψ from Δ(A) × Δ(B) onto
Δ(A ̂⊗πB) fails to be continuous for the hull-kernel topologies. To simplify
notation, identify as sets both of Δ(A) and Δ(B) with D and Δ(A ̂⊗πB)
with D × D. Then the diagonal Δ = {(z, z) : z ∈ D} is hull-kernel closed in
Δ(A ̂⊗πB). Indeed, Δ is the zero set of the function z ⊗ 1 − 1 ⊗ w ∈ A ⊗ B,
that is, the function (z, w) → z − w. So W = Δ(A ̂⊗πB) \ Δ is hull-kernel
open.

Assuming that φ is hull-kernel continuous, there exist nonempty hull-
kernel open subsets U of Δ(A) and V of Δ(B), respectively, such that
U ×V ⊆ φ−1(W ). Because the hull-kernel topology on Δ(B) equals the usual
topology on D, V can be taken to be an ordinary open disc contained in
D. Now the hull-kernel closed subset Δ(A) \ U of Δ(A) can contain at most
countably many interior points of D (Example 4.1.4). In particular, V ∩U is a
nonempty subset of Δ(A). It follows that U ×V intersects Δ, a contradiction.
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Also, the next two lemmas are used in subsequent sections.

Lemma 4.1.9. Let I be a closed ideal of the commutative Banach algebra A
and let E be an hk-closed subset of Δ(A) such that E ∩ h(I) = ∅ and k(E) is
modular. Then I contains an identity modulo k(E).

Proof. Because A/(I + k(E)) is unital and

h(I + k(E)) = h(I) ∩ h(k(E)) = h(I) ∩ E = ∅,

it follows that I + k(E) = A. Let u ∈ A be such that ux − x ∈ k(E) for all
x ∈ A. Then u = v + y, where v ∈ I and y ∈ k(E), and hence vx − x =
ux − x + yx ∈ k(E) for all x ∈ A. �	

Lemma 4.1.10. Let A be a semisimple commutative Banach algebra with
bounded approximate identity and regard A as a closed ideal of its multiplier
algebra M(A). Then Δ(A) is hull-kernel dense in Δ(M(A)).

Proof. We have to show that h(k(Δ(A))) = Δ(M(A)). For that, consider an
arbitrary T ∈ k(Δ(A)), so T is a multiplier of A such that ϕ(T ) = 0 for
all ϕ ∈ Δ(A) = Δ(M(A)) \ h(A). To prove that T = 0, by semisimplicity
of A it suffices to show that ψ(Ta) = 0 for all a ∈ A and ψ ∈ Δ(A). Let
ϕ ∈ Δ(M(A)) denote the unique extension of ψ. Then

ψ(Ta) = ϕ(LTa) = ϕ(LaT ) = ϕ(La)ϕ(T ) = 0,

as desired. �	

4.2 Regular commutative Banach algebras

Let T be a T1 topological space and F a family of complex valued functions
on T . Recall from point set topology that F is said to be regular if for any
given closed subset E of T and t ∈ T \ E, there exists f ∈ F with f(t) �= 0
and f |E = 0. This leads to the following definition.

Definition 4.2.1. A commutative Banach algebra A is called regular if its
algebra of Gelfand transforms is regular in the above sense, that is, given any
closed subset E of Δ(A) and ϕ0 ∈ Δ(A) \ E, there exists x ∈ A such that
ϕ0(x) �= 0 and ϕ(x) = 0 for all ϕ ∈ E.

Some authors (see [108] and [19], for example) call such Banach algebras
completely regular rather than regular. However, the term regular is more
widely used.

Example 4.2.2. (1) Every commutative C∗-algebra A is regular. Indeed, A
is isomorphic to C0(Δ(A)), and Urysohn’s lemma ensures that for any locally
compact Hausdorff space T , C0(T ) is a regular space of functions.
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(2) It is easily seen that Cn[a, b] is regular since, when Δ(Cn[a, b]) is iden-
tified with [a, b], the Gelfand homomorphism is nothing but the identity.

(3) The disc algebra A(D) fails to be regular since the Gelfand homomor-
phism is the identity mapping and a nonzero holomorphic function cannot
vanish on, say, a nonempty open set.

It is fairly difficult to prove and is postponed to Section 4.4 that L1(G),
for G a locally compact Abelian group, is regular. In fact, this is one of the
most crucial results in commutative harmonic analysis.

We continue to identify Δ(A) with Max(A) via the mapping ϕ → kerϕ
(Theorem 2.1.7) and proceed with relating regularity of a commutative Ba-
nach algebra A to properties of the hull-kernel topology on Δ(A).

Theorem 4.2.3. For a commutative Banach algebra A, the following condi-
tions are equivalent.

(i) A is regular.
(ii) The hull-kernel topology and the Gelfand topology on Δ(A) coincide.
(iii) The hull-kernel topology on Δ(A) is Hausdorff, and every point in Δ(A)

possesses a hull-kernel neighbourhood with modular kernel.

Proof. We show the chain of implications (i) ⇒ (ii) ⇒ (iii) ⇒ (i). If I is a
closed ideal of A, we consider Δ(A/I) as embedded into Δ(A) (Lemma 4.1.5).

Suppose that A is regular and consider a subset E of Δ(A) that is closed
in the Gelfand topology. Then, for every ϕ ∈ Δ(A) \ E, there exists xϕ ∈ A
with x̂ϕ|E = 0 and x̂ϕ(ϕ) �= 0. This means that k(E) �⊆ kerϕ for every
ϕ ∈ Δ(A)\E, and hence E = h(k(E)), which is an hk-closed set. This proves
that the two topologies on Δ(A) coincide.

To prove (ii) ⇒ (iii) we only have to show that every ϕ0 ∈ Δ(A) has a
neighbourhood V with modular kernel k(V ). Fix x ∈ A with ϕ0(x) �= 0 and
let

V =
{

ϕ ∈ Δ(A) : |ϕ(x)| >
1
2
|ϕ0(x)|

}

.

Then V is open and V , the closure of V in the Gelfand topology, is contained
in the set {ϕ ∈ Δ(A) : |ϕ(x)| ≥ 1

2 |ϕ0(x)|}. Because x̂ vanishes at infinity,
V is compact. Now, by hypothesis, V = h(k(V )) = Δ(A/k(V )). Thus the
semisimple algebra A/k(V ) has a compact structure space and ψ(x+k(V )) �=
0 for every ψ ∈ V . Corollary 3.2.2 now yields that A/k(V ) has an identity.

Finally, suppose that (iii) holds. To show (i), let E be a subset of Δ(A)
which is closed in the Gelfand topology and let ϕ0 ∈ Δ(A)\E. Choose an open
hull-kernel neighbourhood V of ϕ0 with modular kernel k(V ). Since A/k(V )
has an identity, h(k(V )) = Δ(A/k(V )) is compact with respect to the Gelfand
topology, and hence so is E0 = E ∩h(k(V )). Consequently, E0 is hk-compact.
Now, ϕ0 �∈ E0, and the hull-kernel topology is Hausdorff by hypothesis. By
the standard covering argument, ϕ0 and E0 can be separated by hk-open sets.
Thus, let U be an hk-open set containing E0 such that ϕ0 �∈ U = h(k(U)).
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Then there exists y ∈ A such that ϕ0(y) �= 0, but ϕ(y) = 0 for all ϕ ∈ U .
On the other hand, ϕ0 ∈ V and Δ(A) \ V is hk-closed. Hence there exists
z ∈ k(Δ(A) \ V ) with ϕ0(z) �= 0. Let x = yz, then ϕ0(x) = ϕ0(y)ϕ0(z) �= 0
and ϕ(x) = 0 for all ϕ ∈ (Δ(A) \ V ) ∪ U . Now

(Δ(A) \ V ) ∪ U ⊇ [Δ(A) \ h(k(V ))] ∪ [E ∩ h(k(V )] ⊇ E,

so that x̂|E = 0. This shows that A is regular. �	

By Lemma 2.2.14, the Gelfand topology on Δ(A) equals the weak topology
with respect to the functions x̂, x ∈ A. Therefore the equivalence of (i) and
(ii) in Theorem 4.2.3 can obviously be reformulated as follows.

Corollary 4.2.4. A is regular if and only if x̂ is hull-kernel continuous on
Δ(A) for each x ∈ A.

Remark 4.2.5. In [75, Theorem 7.1.2] it is claimed that a commutative Ba-
nach algebra is regular provided that the hull-kernel topology on Δ(A) is
Hausdorff. Of course, this is true when A is unital. However, even though we
are unaware of a counterexample, this strengthening of the implication (iii)
⇒ (i) in Theorem 4.2.3 does not seem to be correct.

In what follows we show that in the definition of regularity the singleton
{ϕ} can be replaced by any compact subset of Δ(A) which is disjoint from
E, and we investigate how regularity behaves under the standard operations
on Banach algebras, such as adjoining an identity and forming closed ideals,
quotients, and tensor products.

Theorem 4.2.6. Let A be a commutative Banach algebra.

(i) Let I be closed ideal of A. If A is regular, then so are the algebras I and
A/I.

(ii) A is regular if and only if Ae, the unitisation of A, is regular.

Proof. (i) Because A is regular, by Theorem 4.2.3 the Gelfand topology coin-
cides with the hk-topology on Δ(A). By Lemma 4.1.5(ii), the map ϕ → ϕ|I
is a homeomorphism for the hk-topologies on Δ(A) \ h(I) and Δ(I), and the
same is true of the Gelfand topologies by Lemma 2.2.15(ii). So the Gelfand
topology and the hk-topology on Δ(I) coincide. Another application of The-
orem 4.2.3 now shows that I is regular.

Similarly, using Lemma 4.1.5(i) and Lemma 2.2.15(i), it follows that A/I
is regular.

(ii) If Ae is regular, so is A by (i). Conversely, suppose that A is regular.
Then, for every a ∈ A, â is hk-continuous on Δ(A) by Corollary 4.2.4 and
hence on Δ(Ae) by Lemma 4.1.6. This of course implies that x̂ is hk-continuous
on Δ(Ae) for each x ∈ Ae. So Ae is regular by Corollary 4.2.4. �	
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We show later (Theorem 4.3.8) that conversely A is regular whenever A
has a closed ideal I such that both I and A/I are regular. This result is
more difficult and involves the existence of a greatest closed regular ideal in a
commutative Banach algebra. It is worth mentioning that a closed subalgebra
of a regular algebra need not be regular. In fact, C(D) is regular whereas the
closed subalgebra A(D) is not.

Lemma 4.2.7. Let I be an ideal in the regular commutative Banach algebra
A. Given any ϕ0 ∈ Δ(A) \ h(I), there exists u ∈ I such that û = 1 in some
neighbourhood of ϕ0.

Proof. Because A is regular, by Theorem 4.2.3 the hull-kernel topology on
Δ(A) is Hausdorff and ϕ0 possesses a neighbourhood with modular kernel.
Therefore we can choose a neighbourhood V of ϕ0 such that V ∩h(I) = ∅ and
k(V ) is modular. By Lemma 4.1.9 there exists u ∈ I such that û|V = 1. �	

The following theorem is one of the most striking results on regular com-
mutative Banach algebras, as becomes apparent in this and several of the
subsequent sections.

Theorem 4.2.8. Let A be a regular commutative Banach algebra, and sup-
pose that I is an ideal in A and K is a compact subset of Δ(A) with
K ∩ h(I) = ∅. Then there exists x ∈ I such that

x̂|K = 1 and x̂ = 0 on some neighbourhood of h(I).

Proof. We first show the existence of some y ∈ I with ŷ|K = 1. As K is
compact, by the preceding lemma there exist open subsets Vi of Δ(A) and
ui ∈ I, 1 ≤ i ≤ r, such that ûi|Vi = 1 and K ⊆

⋃r
i=1 Vi. We inductively define

elements yi of A by y1 = u1 and

yi+1 = yi + ui+1 − yiui+1, 1 ≤ i ≤ r − 1.

It then follows by induction that yi ∈ I and ŷj |⋃j
i=1 Vi

= 1. Indeed, if yj has
this latter property, then

ϕ(yj+1) = ϕ(yj) + ϕ(uj+1) − ϕ(yj)ϕ(uj+1)

=
{

1 + ϕ(uj+1) − ϕ(uj+1) for ϕ ∈
⋃j

i=1 Vi

ϕ(yj) + 1 − ϕ(yj) for ϕ ∈ Vj+1,

and hence ŷj+1 = 1 on
⋃j+1

i=1 Vi. Now y = yr has the desired properties.
Choose an open subset V of Δ(A) with K ⊆ V and V ⊆ Δ(A) \ h(I).

Because
K ∩ h(k(Δ(A) \ V )) = K ∩ (Δ(A) \ V ) = ∅,

we can apply the arguments of the first part of the proof to K and the ideal
J = k(Δ(A) \V ) to obtain z ∈ J with ẑ|K = 1. By the first part of the proof,
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there exists y ∈ I such that ŷ|K = 1. Then the element x = yz of I satisfies
x̂(ϕ) = 1 for all ϕ ∈ K and

supp x̂ ⊆ supp ẑ ⊆ V ⊆ Δ(A) \ h(I),

so that x̂ vanishes in a neighbourhood of h(I). �	
We continue with a series of interesting and very useful applications of

Theorem 4.2.8.

Corollary 4.2.9. Every regular commutative Banach algebra A is normal in
the sense that whenever E ⊆ Δ(A) is closed, K ⊆ Δ(A) is compact and
E∩K = ∅, then there exists x ∈ A such that supp x̂ ⊆ Δ(A)\E and x̂|K = 1.

Corollary 4.2.10. Let A be a regular commutative Banach algebra such that
its range under the Gelfand homomorphism A → C0(Δ(A)) is closed under
complex conjugation. Suppose that K and E are disjoint closed subsets of
Δ(A) with K compact. Then there exists x ∈ A such that

x̂|K = 1, 0 ≤ x̂ ≤ 1 and supp x̂ ⊆ Δ(A) \ E.

Proof. By Theorem 4.2.8 there exist y ∈ A such that ŷ|K = 1 and supp ŷ ⊆
Δ(A) \ E. By hypothesis, there exists z ∈ A such that ẑ = ŷ. Let f be the
entire function defined by

f(w) = sin2
(π

2
w
)

and let x = f(yz). Then by Theorem 3.1.8,

x̂(ϕ) = ϕ(f(yz)) = f(ϕ(y)ϕ(z)) = sin2
(π

2
|ϕ(y)|2

)

for all ϕ ∈ Δ(A). Thus

x̂|K = 1, 0 ≤ x̂ ≤ 1 and supp x̂ ⊆ Δ(A) \ E.

�	
Corollary 4.2.11. Let A be a semisimple regular commutative Banach alge-
bra. If Δ(A) is compact, then A has an identity.

Proof. By Theorem 4.2.8 there is u ∈ A such that û = 1 on Δ(A) and hence
x̂ − ux = 0 on Δ(A) for all x ∈ A. A being semisimple, this yields ux = x for
all x ∈ A. �	

In Corollary 3.5.5 we have already shown as an application of the Shilov
idempotent theorem that the conclusion of Corollary 4.2.11 holds true without
assuming that A be regular. However, since the proof of Shilov’s idempotent
theorem requires a several-variable functional calculus, it appears to be justi-
fied to give a simpler proof in the case of a regular semisimple algebra.

In a regular commutative Banach algebra A we can find partitions of unity
on Δ(A) subordinate to a given finite open cover of a compact set. Corollary
4.2.9 represents essentially the case n = 1 of the following result.
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Corollary 4.2.12. Let A be a regular commutative Banach algebra. Suppose
that K is a compact subset of Δ(A) and U1, . . . , Un are open subsets of Δ(A)
such that K ⊆

⋃n
j=1 Uj. Then there exist a1, . . . , an ∈ A with the following

properties.

(i)
(

â1 + . . . + ân

)

|K = 1.
(ii) âj |Δ(A)\Uj

= 0 for each j = 1, . . . , n.

Proof. Choose open subsets Vj of Δ(A), 1 ≤ j ≤ n, such that V j ⊆ Uj and
K ⊆

⋃n
j=1 Vj . Let

Ij = k(Δ(A) \ Vj), 1 ≤ j ≤ n, and I = I1 + . . . + In.

Then h(Ij) = Δ(A) \ Vj and hence

h(I) =
n
⋂

j=1

h(Ij) =
n
⋂

j=1

(Δ(A) \ Vj) = Δ(A) \
n
⋃

j=1

Vj .

Thus h(I)∩K = ∅, and Theorem 4.2.8 guarantees the existence of some a ∈ I
with â|K = 1. Write a as a = a1 + . . . + an where aj ∈ Ij . Then a1, . . . , an

satisfy (i) and (ii). �	

Corollary 4.2.12 turns out to be a key tool when studying the ideal struc-
ture of regular commutative Banach algebras.

The main objective in the remainder of this section is to establish further
permanence properties of regularity.

Lemma 4.2.13. Let A and C be commutative Banach algebras and let f :
Δ(A) → Δ(C) be an injective map with the following properties.

(i) f is continuous with respect to the hull-kernel topologies.
(ii) f−1 : f(Δ(A)) → Δ(A) is continuous for the Gelfand topologies.

Then A is regular whenever C is.

Proof. We remind the reader that a commutative Banach algebra B is regular
if and only if the Gelfand topology and the hk-topology on Δ(B) coincide
(Theorem 4.2.3). Let E be a subset of Δ(A) which is closed in the Gelfand
topology. Then f(E) is closed in the Gelfand topology of f(Δ(A)) by condition
(ii). So f(E) = F ∩f(Δ(A)) for some subset F of Δ(C) which is closed in the
Gelfand topology of Δ(C). Because C is regular, F is hk-closed in Δ(C). It
now follows from (i) that E = f−1(F ) is hk-closed in Δ(A). Thus the Gelfand
topology on Δ(A) is coarser than the hk-topology, and hence A is regular. �	

Theorem 4.2.14. Let j : A → B be an injective algebra homomorphism
between commutative Banach algebras. Suppose that B is regular and that
j(A) is an ideal in B. Then A is regular.
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Proof. Let I = j(A), which is a closed ideal in B. Since B is regular, so is I
by Theorem 4.2.6. Consider the dual mapping

j∗ : Δ(I) → Δ(A), ψ → ψ ◦ j.

Then j∗ is injective since j(A) is dense in I. We show that j∗ is also surjective.
To this end, let ϕ ∈ Δ(A) be given and select a ∈ A such that ϕ(a) = 1. Define
ψ : I → C by

ψ(y) = ϕ(j−1(j(a)y)),

y ∈ I. Clearly, ψ is linear and ψ◦j(x) = ϕ(ax) = ϕ(x) for all x ∈ A. Moreover,
for y1, y2 ∈ I,

ψ(y1y2) = ϕ(a)ϕ(j−1(j(a)y1y2))
= ϕ(j−1(j(a)y1j(a)y2))
= ϕ(j−1(j(a)y1))ϕ(j−1(j(a)y2))
= ψ(y1)ψ(y2).

This shows that ψ ∈ Δ(I) and j∗(ψ) = ϕ.
Thus j∗ is a bijection and clearly continuous for the Gelfand topologies.

We claim that (j∗)−1 is continuous for the hull-kernel topologies. For that we
have to show that if F is an hk-closed subset of Δ(I) and ϕ ∈ Δ(A) annihilates
k(j∗(F )), then ϕ ∈ j∗(F ). Fix a ∈ A with ϕ(a) = 1 and let y ∈ k(F ) ⊆ I be
arbitrary. Then

(j∗)−1(ϕ)(y) = (j∗)−1(ϕ)(j(a))(j∗)−1(ϕ)(y)
= (j∗)−1(ϕ)(j(a)y)
= ϕ(j−1(j(a)y))
= 0,

because j−1(j(a)y) ∈ k(j∗(F )). Hence (j∗)−1(ϕ) ∈ h(k(F )) = F , whence
ϕ ∈ j∗(F ).

An application of Lemma 4.2.13 with C = I and f = (j∗)−1 now yields
that A is regular. �	

The following lemma is frequently used in Section 4.3.

Lemma 4.2.15. Let A and B be commutative Banach algebras, and let φ :
A → B be a homomorphism with dense range. If A is regular, then so is B.

Proof. We have to show that given a closed subset F of Δ(B) and ψ ∈ Δ(B)\
F , there exists b ∈ B such that ̂b = 0 on F and ̂b(ψ) �= 0.

Consider the dual mapping φ∗ : Δ(B) → Δ(A), ψ → ψ ◦ φ. We claim
that φ∗(ψ) �∈ φ∗(F ). Assuming that φ∗(ψ) ∈ φ∗(F ), we find a net (ψα)α in
F such that φ∗(ψα) → φ∗(ψ); that is, ψα(φ(a)) → ψ(φ(a)) for all a ∈ A.
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Because φ(A) is dense in B, this implies that ψα → ψ. Thus ψ ∈ F , which is
a contradiction.

So φ∗(ψ) �∈ φ∗(F ) and since A is regular, there exists a ∈ A such that
â = 0 on φ∗(F ) and â(φ∗(ψ)) �= 0. Now let b = φ(a). Then ̂b vanishes on F ,
whereas ̂b(ψ) �= 0. �	

Theorem 4.2.16. Let A and B be commutative Banach algebras and suppose
that A is semisimple and regular. If φ is an injective homomorphism from A
into B, then

(Δ(B) ∪ {0}) ◦ φ = Δ(A) ∪ {0}.

Proof. Clearly, (Δ(B)∪{0})◦φ ⊆ Δ(A)∪{0}. Towards a contradiction, assume
there exists ϕ0 ∈ Δ(A)\Δ(B)◦φ. Then, for any ψ ∈ Δ(B)∪{0}, there exists
aψ ∈ A such that ψ ◦ φ(aψ) �= ϕ0(aψ). Let εψ = 1

2 |ψ ◦ φ(aψ) − ϕ0(aψ)| and

Wψ = {ρ ∈ Δ(B) ∪ {0} : |ρ(φ(aψ)) − ϕ0(aψ)| > εψ}.

Then Wψ is an open neighbourhood of ψ in Δ(B)∪{0} ⊆ B∗. Since Δ(B)∪{0}
is compact in the w∗-topology, there exist ψ1, . . . , ψn ∈ Δ(B)∪ {0} such that

Δ(B) ∪ {0} =
n
⋃

j=1

Wψj .

Let aj = aψj (1 ≤ j ≤ n), ε = min{εψj : 1 ≤ j ≤ n}, and

V = {ϕ ∈ Δ(A) ∪ {0} : |ϕ(aj) − ϕ0(aj)| < ε for 1 ≤ j ≤ n}.

Then V is an open neighbourhood of ϕ0 in Δ(A) ∪ {0}. Furthermore,

V ∩ (Δ(B) ∪ {0}) ◦ φ = ∅.

Indeed, for ϕ ∈ V and ψ ∈ Wψj , we have

|ψ ◦ φ(aj) − ϕ(aj)| ≥ |ψ(φ(aj)) − ϕ0(aj)| − |ϕ0(aj) − ϕ(aj)| > εψj − ε ≥ 0,

so that V ∩ (Wψj ◦ φ) = ∅.
Choose an open subset U of Δ(A) such that ϕ0 ∈ U , U is compact and

U ⊆ Δ(A) ∩ V . Since A is regular, there exists a1 ∈ A such that ϕ0(a1) = 1
and ϕ(a1) = 0 for all ϕ ∈ Δ(A) \U . Let I = k(Δ(A) \V ). Then h(I)∩U = ∅
and Theorem 4.2.8 yields the existence of some a2 ∈ A such that ϕ(a2) = 0
for all ϕ ∈ Δ(A) \ V and ϕ(a2) = 1 for all ϕ ∈ U . The element a1a2 of A
then satisfies ϕ(a1a2) = ϕ(a1) for all ϕ ∈ Δ(A). Because A is semisimple, we
conclude that a1a2 = a1.

We next consider φ(a2) as an element of Be and claim that (1−φ(a2))Be =
Be. Assuming that (1 − φ(a2))Be is a proper ideal of Be, it is contained in
some maximal ideal of Be. Thus there exists τ ∈ Δ(Be) such that
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τ(y) − τ(y)τ(φ(a2)) = 0

for all y ∈ Be. We have seen above that V ∩ (Δ(B) ◦ φ) = ∅. Since ϕ(a2) = 0
for all ϕ ∈ Δ(A) \ V , it follows that τ(φ(a2)) = 0. This implies τ = 0, which
is impossible.

Thus (1 − φ(a2))Be = Be and hence there exists b ∈ Be such that e =
b − bφ(a2). Since a1a2 = a1, we obtain

φ(a1) = (b − bφ(a2))φ(a1) = bφ(a1) − bφ(a1a2) = 0.

Since φ is injective, a1 = 0. This contradicts â1(ϕ0) = 1 and hence the exis-
tence of some ϕ0 ∈ Δ(A) \ Δ(B) ◦ φ. �	

Corollary 4.2.17. Let B be a commutative Banach algebra and A a subal-
gebra of B. Suppose that, for some norm, A is a semisimple regular Banach
algebra. Then

(i) Every element of Δ(A) extends to some element of Δ(B).
(ii) σA(x) ∪ {0} = σB(x) ∪ {0} for all x ∈ A.

Proof. (i) is an immediate consequence of Theorem 4.2.16. To show (ii), we
apply Theorem 4.2.16 taking for φ the inclusion map j : A → B. It follows
that

σA(x) ∪ {0} = x̂(Δ(A) ∪ {0})
= x̂((Δ(B) ∪ {0}) ◦ j)

= ̂j(x)(Δ(B) ∪ {0})
= σB(x) ∪ {0}

for every x ∈ A. �	

The preceding corollary is related to concepts which will be studied in Sec-
tion 4.6. More precisely, let A be any semisimple regular commutative Banach
algebra. Then Corollary 4.2.17(i) says that A has the so-called multiplicative
Hahn–Banach property.

Corollary 4.2.18. Let A be a semisimple regular commutative Banach alge-
bra, and let | · | be any algebra norm on A. Then rA(x) ≤ |x| for all x ∈ A.

Proof. Let B be the completion of A with respect to | · |. Then part (ii) of
Corollary 4.2.17 implies that

rA(x) = sup{|λ| : λ ∈ σA(x)} = sup{|λ| : λ ∈ σB(x)} ≤ |x|

for all x ∈ A. �	

We conclude this section by characterizing regularity of tensor products
A ̂⊗αB through regularity of A and B.
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Lemma 4.2.19. Let A and B be commutative Banach algebras and let α be
an algebra cross-norm on A ⊗ B such that α ≥ ε. Then A ̂⊗αB is regular
whenever both A and B are regular.

Proof. We identify Δ(A) × Δ(B) and Δ(A ̂⊗αB) as topological spaces by
means of the map (ϕ, ψ) → ϕ ̂⊗αψ (Theorem 2.11.2). Let E be a closed subset
of Δ(A ̂⊗αB) and let ϕ0 ∈ Δ(A) and ψ0 ∈ Δ(B) be such that (ϕ0, ψ0) �∈ E.
There exist open neighbourhoods U of ϕ0 in Δ(A) and V of ψ0 in Δ(B)
such that (U × V ) ∩ E = ∅. Because A and B are regular, there exist a ∈ A

and b ∈ B such that â(ϕ0) �= 0, â = 0 on Δ(A) \ U , ̂b(ψ0) �= 0 and ̂b = 0
on Δ(B) \ V . Then the element a ⊗ b satisfies â ⊗ b(ϕ0, ψ0) �= 0 and â ⊗ b
vanishes on

((Δ(A) \ U) × Δ(B)) ∪ (Δ(A) × (Δ(B) \ V ))

and hence on E. �	

Theorem 4.2.20. Let A and B be commutative Banach algebras and let α be
a cross-norm on A ⊗ B which dominates ε. Then the tensor product A ̂⊗αB
is regular if and only if both A and B are regular.

Proof. By Lemma 4.2.19, A ̂⊗αB is regular whenever A and B are regular.
So suppose that conversely A ̂⊗αB is regular. To see that A is regular, by
Corollary 4.2.4 it suffices to show that, for each a ∈ A, the function ϕ → ϕ(a)
is hk-continuous on Δ(A).

Select ψ ∈ Δ(B) and let φψ : A ̂⊗αB → A be the continuous homomor-
phism satisfying φψ(a ⊗ b) = ψ(b)a for all a ∈ A and b ∈ B (Lemma 2.11.5).
The kernel I of φψ is a closed ideal, and the dual map φ∗

ψ : ϕ → ϕ ◦ φψ is a
bijection between Δ(A) and Δ((A ̂⊗αB)/I). It actually is a homeomorphism
for the hull-kernel topologies by Lemma 4.1.5. Note that ϕ ◦φψ = ϕ ̂⊗αψ and
choose b ∈ B with ψ(b) = 1. Then

ϕ(a) = (ϕ ̂⊗αψ)(a ⊗ b) = φ∗
ψ(ϕ)(a ⊗ b)

for all a ∈ A. Now, A ̂⊗αB is regular and therefore the function ϕ ̂⊗αψ →
(ϕ ̂⊗αψ)(a ⊗ b) is hk-continuous on Δ(A ̂⊗αB) (Corollary 4.2.4). Since φ∗

ψ is
hk-continuous, it follows that ϕ → ϕ(a) is hk-continuous on Δ(A). �	

4.3 The greatest regular subalgebra

The first purpose of this section is to establish the existence of a closed regu-
lar subalgebra of a commutative Banach algebra A which contains all closed
regular subalgebras of A.

Lemma 4.3.1. Let A be a commutative Banach algebra and B a closed sub-
algebra of A. If B is regular, then for every b ∈ B the Gelfand transform ̂b is
continuous on Δ(A) with respect to the hull-kernel topology.
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Proof. Suppose first that A has an identity e and that e ∈ B. Let r : Δ(A) →
Δ(B) denote the restriction map ϕ → ϕ|B . Because B is regular, the Gelfand
transform of b ∈ B on Δ(B) is hk-continuous by Corollary 4.2.4. It therefore
suffices to show that r is continuous for the hull-kernel topologies on Δ(A)
and Δ(B). To see this, let F be a hk-closed subset of Δ(B). Then

F = {ψ ∈ Δ(B) : ψ(k(F )) = 0}

and hence
r−1(F ) = {ϕ ∈ Δ(A) : ϕ(k(F )) = 0},

which is hk-closed in Δ(A).
In the general situation, consider Ae and the subalgebra Be = B + Ce.

Since B is regular, so is Be (Theorem 4.2.6). By the first paragraph, for b ∈ B,
̂b is hull-kernel continuous on Δ(Ae) and hence on Δ(A). �	

Theorem 4.3.2. Let A be a commutative Banach algebra. Then A contains
a greatest closed regular subalgebra, denoted reg(A).

Proof. Let reg(A) be the closed subalgebra of A generated by the collection
B of all closed regular subalgebras B of A. We have to show that reg(A) is
regular.

Let B ∈ B and b ∈ B. Then, by the preceding lemma, ̂b is hk-continuous
on Δ(reg(A)). Thus Gelfand transforms of products b1b2 · . . . ·bm, bj ∈ Bj ∈ B,
1 ≤ j ≤ m, and hence of finite linear combinations of such products are also
hk-continuous on Δ(reg(A)). The elements of this form are dense in reg(A).
Therefore, for each a ∈ reg(A), the Gelfand transform â is a uniform limit on
Δ(reg(A)) of hk-continuous functions, hence itself is hk-continuous.

It now follows from Corollary 4.2.4 that reg(A) is regular. �	

Remark 4.3.3. The greatest regular subalgebra of a unital commutative Ba-
nach algebra may well be trivial. For instance, this happens with the disc
algebra A(D). To see this, let f ∈ A(D) and suppose that f is hull-kernel
continuous. Then, for each ε > 0, the set Cε = {z ∈ D : |f(z) − f(0)| ≤ ε} is
hk-closed in D. It follows that Cε∩{z ∈ C : |z| ≤ r} is finite for each 0 < r < 1.
This of course forces f to be constant with value f(0) on {z ∈ C : |z| ≤ r}.
Thus reg(A(D)) consists only of the constant functions.

The same arguments as in the proof of Theorem 4.3.2 show that A pos-
sesses a largest closed regular ideal. More precisely, let regid(A) be the closed
subalgebra of A generated by all the closed regular ideals of A. Then regid(A)
is regular and it is a closed ideal which contains every closed regular ideal
of A.

Lemma 4.3.4. There exists a largest closed regular ideal regid(A) of A, and
for every x ∈ A, x̂ is hull-kernel continuous on the open subset Δ(regid(A))
of Δ(A).
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Proof. It only remains to show the second statement. Let J = regid(A) and
x ∈ A. Let ϕ0 be an arbitrary element of Δ(J) and choose y ∈ J such
that ϕ0(y) �= 0. Then ŷ �= 0 in a neighbourhood V of ϕ0 and xy ∈ J .
Since J is regular both x̂y and ŷ are hk-continuous functions on Δ(J). Now
x̂(ϕ) = x̂y(ϕ)ŷ(ϕ)−1 for all ϕ ∈ V and hence x̂ is hk-continuous at ϕ0. �	

Lemma 4.3.5. Let A be a commutative Banach algebra, J the greatest regular
ideal of A and suppose that A/J is regular. Then the hull h(J) has empty
interior in Δ(A).

Proof. Assume that there exists a nonempty open subset U of Δ(A) which
is contained in h(J) = Δ(A/J). Because A/J is regular, U is hk-open in
h(J). Let W be an hk-open subset of Δ(A) such that W ∩ h(J) = U , and
let K = k(Δ(A) \ W ). Then Δ(K) = W and hence Δ(K) ∩ h(J) = U , and
V = Δ(K) ∩ Δ(J) is hk-open in Δ(K). Then Δ(K) = U ∪ V and U and V
are both hk-open in Δ(K).

Now, for every x ∈ A, x̂ is hk-continuous on U since A/J is regular. By
Lemma 4.3.4, x̂ is also hk-continuous on V . In particular, x̂ is hk-continuous
on Δ(K) for every x ∈ K. Thus K is a regular ideal of A by Corollary 4.2.4.
But K is not contained in J since U �= ∅ and U ⊆ h(J). This contradiction
shows that h(J) has an empty interior. �	

Corollary 4.3.6. Let A and J be as in Lemma 4.3.5 and let E be a closed
subset of Δ(A) such that k(E) = {0}. Then E = Δ(A).

Proof. By Lemma 4.3.5, Δ(J) is dense in Δ(A). It is therefore enough to show
that Δ(J) ⊆ E. Assume that F = E∩Δ(J) is a proper subset of Δ(J). Then,
since J is regular, there exists a nonzero element x of J such that x̂ = 0 on F .
It follows that x̂ vanishes on all of E. This contradicts k(E) = {0} and shows
that E ⊇ Δ(J). �	

Lemma 4.3.7. Let J be the greatest closed regular ideal of A and suppose
that A/J is regular. Let I be an arbitrary closed ideal of A. Then there exists
a closed ideal K of A/I such that both K and (A/I)/K are regular.

Proof. Let q : A → A/I denote the quotient homomorphism. Since J is
regular, Lemma 4.2.15 implies that K = q(J) is a regular ideal of A/I. Yet,
(A/I)/K is also regular. Indeed, since

(A/I)/K = (A/I)/(q−1(K)/I) = A/q−1(K)

and since q−1(K) contains J , (A/I)/K is a quotient algebra of A/J . Because
A/J is regular by hypothesis, it follows from Theorem 4.2.6 that (A/I)/K is
regular. �	

Recall that if A is regular and I is a closed ideal of A, then both I and
A/I are regular (Theorem 4.2.6). We are now ready to prove the converse.



210 4 Regularity and Related Properties

Theorem 4.3.8. Let A be a commutative Banach algebra and suppose that A
has a closed ideal I such that both I and A/I are regular. Then A is regular.+

Proof. Let J be the largest regular closed ideal of A. Then J ⊇ I and since A/I
is regular, it follows that A/J is regular as well. So A satisfies the hypotheses
of Lemma 4.3.7.

Let E be any closed subset of Δ(A). We have to show that E is hk-closed
in Δ(A). To that end, let B = A/k(E), let q : A → B denote the quotient
homomorphism and consider the dual mapping

q∗ : Δ(B) → h(k(E)) ⊆ Δ(A), ψ → ψ ◦ q.

Let F = q∗1−1(E) ⊆ Δ(B). We claim that k(F ) = {0}.
For that, let x ∈ A be such that q(x) ∈ k(F ) and let ϕ ∈ E. Then ϕ = ψ◦q

for some ψ ∈ F and hence ϕ(x) = ψ(q(x)) = 0. Thus x ∈ k(E) and therefore
q(x) = 0. Applying Lemma 4.3.7 with I = k(E), we see that B = A/k(E) and
F ⊆ Δ(B) satisfy the hypotheses of Corollary 4.3.6. It follows that F = Δ(B),
and this implies

E = q∗(q∗
−1

(E)) = q∗(F ) = q∗(Δ(B)) = h(k(E)),

so that E is hk-closed in Δ(A). �	

Corollary 4.3.9. Suppose that A possesses a sequence (Ij)j∈N of closed sub-
algebras with the following properties.

(i) Ij is an ideal in Ij+1 for each j ∈ N and
⋃∞

j=1 Ij is dense in A.
(ii) I1 and Ij+1/Ij are regular for each j ∈ N.

Then A is regular.

Proof. Applying Theorem 4.3.8 and induction, it follows from the hypotheses
that Ij is regular for every j. Thus

⋃∞
j=1 Ij ⊆ reg(A), and since

⋃∞
j=1 Ij is

dense in A, we obtain that reg(A) = A (Lemma 4.2.15). �	

As an important example, we proceed to determine reg(C0(X, A)), where
X is a locally compact Hausdorff space and A any commutative Banach alge-
bra. Although the result turns out to be what one would expect, it is highly
non-trivial to achieve.

Lemma 4.3.10. Let A be a commutative Banach algebra and let B be a Ba-
nach algebra consisting of A-valued functions on a set X with pointwise op-
erations. Let

R = {f ∈ B : f(X) ⊆ reg(A)},

and suppose that R is closed in B and R is regular. Then reg(B) = R.
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Proof. For each x ∈ X , consider the algebra homomorphism

φx : reg(B) → A, f → f(x).

Lemma 4.2.15 yields that φx(reg(B)) is a regular subalgebra of A and hence
contained in reg(A). Thus, for every f ∈ reg(B), we have f(x) ∈ reg(A) for
all x ∈ X . Consequently, reg(B) ⊆ R. By hypothesis, R is closed and regular.
Thus it follows that reg(B) = R. �	

Theorem 4.3.11. Let X be a locally compact Hausdorff space and A a com-
mutative Banach algebra. Then

reg(C0(X, A)) = C0(X, reg(A)).

In particular, C0(X, A) is regular if and only if A is regular.

Proof. Because C0(X, reg(A)) is a closed subalgebra of C0(X, A), by Lemma
4.3.10 it suffices to show that C0(X, reg(A)) is regular. We know from Lemma
4.2.19 that the projective tensor product of the two regular algebras C0(X)
and reg(A) is regular. Therefore, we establish a homomorphism

φ : C0(X) ̂⊗πreg(A) → C0(X, reg(A))

with dense range. Regularity of C0(X, reg(A)) then follows from Lemma
4.2.15.

For f ∈ C0(X) and a ∈ A, let fa ∈ C0(X, A) be defined by fa(x) = f(x)a
for all x ∈ X . Then the map (f, a) → fa is bilinear and maps C0(X)× reg(A)
into C0(X, reg(A)). Hence there is a unique linear map

φ : C0(X) ⊗ reg(A) → C0(X, reg(A))

such that φ(f ⊗ a) = fa for all f ∈ C0(X) and a ∈ reg(A). For f, g ∈ C0(X)
and a, b ∈ A, we have

φ((f ⊗ a)(g ⊗ b)) = φ(fg ⊗ ab) = (fg)(ab) = (fa)(gb) = φ(f ⊗ a)φ(g ⊗ b).

So φ is a homomorphism.
We verify next that φ is continuous with respect to the projective tensor

norm on C0(X)⊗ reg(A). For f1, . . . , fn ∈ C0(X) and a1, . . . , an ∈ reg(A), we
have

∥

∥

∥

∥

∥

φ

(

n
∑

j=1

fj ⊗ aj

)∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n
∑

j=1

fjaj

∥

∥

∥

∥

∥

≤
n
∑

j=1

‖fj‖∞‖aj‖.

It follows that ‖φ(u)‖ ≤ π(u) for every u ∈ C0(X) ⊗ reg(A). Hence φ is
continuous and extends uniquely to a homomorphism

˜φ : C0(X) ̂⊗πreg(A) → C0(X, reg(A)).
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It remains to show that the range of ˜φ is dense in C0(X, reg(A)). To that end,
let F ∈ C0(X, reg(A)) and ε > 0 be given. There exists a compact subset K
of X such that ‖F (x)‖ ≤ ε/2 for every x ∈ X \ K. For each x ∈ K, let

Ux = {y ∈ X : ‖F (y) − F (x)‖ < ε/2}.
The sets Ux, x ∈ K, form an open cover of the compact set K. Hence there
exist x1, . . . , xn ∈ K such that K ⊆

⋃n
j=1 Uxj . Because X is a locally compact

Hausdorff space we can find a partition of unity subordinate to this finite open
cover of K. This means that there exist non-negative continuous functions
f1, . . . , fn on X with compact support such that supp fj ⊆ Uxj for j = 1, . . . , n
and

(

n
∑

j=1

fj

)

(X) ⊆ [0, 1] and

(

n
∑

j=1

fj

)∣

∣

∣

∣

∣

K

= 1.

Now let

u =
n
∑

j=1

fj ⊗ F (xj) ∈ C0(X) ⊗ reg(A).

Then, for every y ∈ X ,

‖F (y) − φ(u)(y)‖ =

∥

∥

∥

∥

∥

F (y) −
n
∑

j=1

fj(y)F (xj)

∥

∥

∥

∥

∥

≤
n
∑

j=1

fj(y)‖F (y) − F (xj)‖ +

(

1 −
n
∑

j=1

fj(y)

)

‖F (y)‖.

It follows that, if y �∈ Uxj for all j = 1, . . . , n, then

‖F (y) − φ(u)(y)‖ ≤ ‖F (y)‖ < ε/2,

whereas if y ∈ Uxk
for at least one k, then

‖F (y) − φ(u)(y)‖ ≤
n
∑

k=1
y∈Uxk

fk(y)‖F (y) − F (xk)‖

+

(

1 −
n
∑

j=1

fj(y)

)

‖F (y)‖

<
ε

2
+

(

1 −
n
∑

j=1

fj(y)

)

‖F (y)‖.

Hence ‖F (y)− φ(u)(y)‖ < ε/2 for y ∈ K, and if y ∈ Uxk
\K for some k, then

‖F (y) − φ(u)(y)‖ <
ε

2
+

⎛

⎝1 −
n
∑

j=1

fj(y)

⎞

⎠

ε

2
≤ ε.

Thus ‖F (y)−φ(u)(y)‖ ≤ ε for all y ∈ X . This shows that φ(C0(X)⊗ reg(A))
is dense in C0(X, reg(A)), which finishes the proof of the theorem. �	



4.4 Regularity of L1(G) 213

4.4 Regularity of L1(G)

The most important examples of regular commutative Banach algebras are the
L1-algebras of locally compact Abelian groups. However, to prove regularity
of L1(G) is rather difficult because one has to appeal to another fundamental
theorem in harmonic analysis, the Plancherel theorem. We have chosen an
approach to the inversion formula and Plancherel’s theorem which utilizes
Gelfand’s theory of commutative C∗-algebras (Section 2.4) and is therefore
much closer to the general theme of this book than are other proofs.

Definition 4.4.1. Let G be a locally compact Abelian group and Cb(G) the
space of all bounded continuous functions on G endowed with the supremum
norm ‖ · ‖∞. Let λ : f → λf denote the regular representation of L1(G)
on L2(G) as introduced in Section 2.7 and recall that the group C∗-algebra,
C∗(G), is the closure of the λ(L1(G)) in B(L2(G)).

Let C∞(G) be the set of all f ∈ Cb(G) such that there exist T ∈ C∗(G)
and a sequence (fn)n in L1(G) ∩ Cb(G) with the following properties.

(i) λfn → T in B(L2(G)) as n → ∞.
(ii) ‖fn − f‖∞ → 0 as n → ∞.

Lemma 4.4.2. Given f ∈ C∞(G), the operator T ∈ C∗(G) in Definition
4.4.1 is unique and is denoted Tf .

Proof. Let T, S ∈ C∗(G) and suppose that (fn)n and (gn)n are sequences in
L1(G) ∩ Cb(G) such that, as n → ∞,

λfn → T, λgn → S and ‖fn − f‖∞ → 0, ‖gn − f‖∞ → 0.

Let Q = T − S. Then, for arbitrary g ∈ Cc(G),

‖(fn − gn) ∗ g‖∞ ≤ ‖fn − gn‖∞‖g‖1 ≤ ‖g‖1(‖fn − f‖∞ + ‖gn − f‖∞) → 0

and

‖(fn − gn) ∗ g − Q(g)‖2 ≤ ‖(λfn − T )(g)‖2 + ‖(λgn − S)(g)‖2 → 0.

In particular, for every compact subset K of G, ((fn−gn)∗g)|K → 0 uniformly
and ((fn − gn) ∗ g)|K → Q(g)|K in L2(K). Both facts together imply that
Q(g)|K = 0 in L2(K). This holds for all compact subsets K of G. Thus
it follows that Q(g) = 0. Since Cc(G) is dense in L2(G), we conclude that
Q = 0. �	

Remark 4.4.3. Let f ∈ L1(G) ∩ C∞(G). Then, taking fn = f for all n ∈ N,
we see that Tf = λf . Hence the three Gelfand transforms ̂Tf , ̂λf , and ̂f

coincide on ̂G. Thus, defining ̂f = ̂Tf for f ∈ C∞(G), the assignment f → ̂f
coincides on L1(G) ∩ C∞(G) with the Gelfand transformation of L1(G). In
addition, we have ‖ ̂f‖∞ = ‖̂Tf‖∞ = ‖Tf‖.
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In preparation for the inversion formula and the Plancherel theorem we
have to provide a series of technical lemmas.

Lemma 4.4.4. The map f → Tf from C∞(G) into C∗(G) is linear and in-
jective.

Proof. Linearity of the map is obvious. Thus it remains to show that f = 0
whenever Tf = 0. So suppose there exists a sequence (fn)n in L1(G) ∩Cb(G)
such that λfn → 0 and ‖fn−f‖∞ → 0. Then, for any g ∈ Cc(G), ‖fn∗g‖2 → 0
and

‖fn ∗ g − f ∗ g‖∞ ≤ ‖fn − f‖∞ ‖g‖1 → 0.

As in the proof of Lemma 4.4.2, it follows that f ∗ g = 0 in L2(G). However,
since f ∗ g is continuous, we get that

∫

G f(x)g(x)dx = 0. Finally, since Cc(G)
is dense in L1(G) and f ∈ L∞(G) = L1(G)∗, it follows that f = 0. �	
Lemma 4.4.5. Let S ∈ C∗(G) and g, h ∈ Cc(G). Then

(i) g ∗ S(h) ∈ C∞(G) and Tg∗S(h) = Sλg∗h.
(ii) S(g) ∗ S(g)∗ ∈ C∞(G) and TS(g)∗S(g)∗ = SS∗λg∗g∗ .

Proof. (i) We know that g ∗ S(h) ∈ C0(G) ⊆ Cb(G). Let (fn)n ⊆ Cc(G) be
such that λfn → S in C∗(G). Then, for every x ∈ G,

|(fn ∗ g ∗ h)(x) − (g ∗ S(h))(x)| ≤
∫

G

|g(y)| · |λfn(h)(y−1x) − S(h)(y−1x)|dy

≤ ‖g‖2 · ‖Rx(λfn(h)) − Rx(S(h))‖2

≤ ‖λfn − S‖ · ‖h‖2‖g‖2,

which tends to zero as n → ∞. Moreover, for each u ∈ Cc(G),

‖λfn∗g∗h(u) − Sλg∗h‖2 ≤ ‖λfn − S‖ · ‖g ∗ h ∗ u‖2

≤ ‖λfn − S‖ · ‖u‖2‖g ∗ h‖1,

and hence
‖λfn∗g∗h − Sλg∗h‖ ≤ ‖λfn − S‖ · ‖g ∗ h‖1 → 0.

This shows that g ∗ S(h) ∈ C∞(G) and Tg∗S(h) = Sλg∗h.
(ii) Clearly, S(g) ∗ S(g)∗ ∈ C0(G) ⊆ Cb(G). Let (fn)n be a sequence in

Cc(G) with λfn → S. Then

‖λfn∗f∗
n∗g∗g∗ − SS∗λg∗g∗‖ = ‖λfnλ∗

fn
λg∗g∗ − SS∗λg∗g∗‖,

which converges to zero as n → ∞. Moreover, we have fn ∗ f∗
n ∗ g ∗ g∗ ∈

L1(G) ∩ Cb(G) and

‖fn ∗ f∗
n ∗ g ∗ g∗ − S(g) ∗ S(g)∗‖∞ = ‖λfn(g) ∗ λfn(g)∗ − S(g) ∗ S(g)∗‖∞

≤ ‖λfn(g)‖2‖λfn(g)∗ − S(g)∗‖2

+ ‖S(g)∗‖2‖λfn(g) − S(g)‖2

≤ ‖λfn − S‖ · ‖g‖2(‖λfn(g)‖2 + ‖S(g)‖2),

which also converges to 0 as n → ∞. This proves (ii). �	
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Lemma 4.4.6. Let f ∈ C∞(G), x ∈ G and α ∈ ̂G. Then

(i) f∗ ∈ C∞(G) and ̂f∗ = ̂f .
(ii) Lxf ∈ C∞(G) and ̂Lxf(α) = α(x) ̂f(α).
(iii) αf ∈ C∞(G) and ̂αf = Lα

̂f .

Proof. Let (fn)n ⊆ L1(G) ∩ Cb(G) and T ∈ C∗(G) such that λfn → T and
‖fn − f‖∞ → 0.

(i) Because ‖f∗
n − f∗‖∞ → 0 and λf∗

n
− T ∗ = (λfn − T )∗ → 0, it follows

that f∗ ∈ C∞(G) and Tf∗ = T ∗ = T ∗
f .

(ii) Let S ∈ B(L2(G)) be defined by S(g) = T (Lxg), g ∈ L2(G). Then, for
all g ∈ Cc(G), ‖Lxfn − Lxf‖∞ → 0 and

‖λLxfn(g) − S(g)‖2 = ‖fn ∗ Lx(g) − T (Lx(g))‖ ≤ ‖λfn − T ‖ · ‖g‖2.

This shows that ‖λLxfn − S‖ → 0 and hence S ∈ C∗(G), Lxf ∈ C∞(G) and
S = TLxf . Thus ̂Lxf = ̂S. On the other hand, ̂Lxh(α) = α(x)̂h(α) for every
h ∈ L1(G) and hence

̂S(α) = lim
n→∞

L̂xfn(α) = α(x) lim
n→∞

̂fn(α) = α(x) ̂T (α).

This shows that ̂f(α)α(x) = ̂Lxf(α).
(iii) Define S ∈ B(L2(G)) by

S(g)(x) = α(x)S(αg)(x), g ∈ L2(G), x ∈ G.

Since ‖αfn − αf‖∞ → 0 and

λαh(g)(x) = ((αh) ∗ g)(x) = α(x)(h ∗ (αg))(x) = α(x)λh(αg)(x)

for h ∈ L1(G), g ∈ Cc(G) and x ∈ G, we get that λαfn → S. Consequently,
S ∈ C∗(G), αf ∈ C∞(G), and S = Tαf . Finally, by Lemma 2.7.3,

̂αf = ̂S = lim
n→∞

̂αfn = lim
n→∞

Lα
̂fn = Lα

̂T = Lα
̂f,

as was to be shown. �	

Lemma 4.4.7. Let f ∈ C∞(G). If ̂f is real valued then f(e) ∈ R, and if
̂f ≥ 0 then f(e) ≥ 0.

Proof. Suppose that ̂f is real valued and let T = Tf . The Gelfand homo-
morphism of L1(G) preserves involution and is injective. Hence we have
̂T ∗ = ̂T = ̂f = ̂f = ̂T and hence T ∗ = T . Now, let fn ∈ L1(G)∩Cb(G), n ∈ N,
be such that ‖fn − f‖∞ → 0 and λfn → T . Then, setting gn = (fn + f∗

n)/2 ∈
L1(G) ∩ Cb(G),



216 4 Regularity and Related Properties

∥

∥

∥

∥

gn − 1
2
(f + f∗)

∥

∥

∥

∥

∞
→ 0 and λgn → 1

2
(T + T ∗) = T.

This implies (f + f∗)/2 ∈ C∞(G) and T(f+f∗)/2 = Tf , whence f = f∗ and,
in particular, f(e) = f(e).

Now let ̂f ≥ 0. Then f(e) ∈ R by what we have shown in the preceding
paragraph. Towards a contradiction, assume that f(e) < 0 and choose sym-
metric neighbourhoods V and W of e in G such that W 2 ⊆ V and Ref(x) < 0
for all x ∈ V . In addition, choose g ∈ C+

c (G), g �= 0, with supp g ⊆ W . We
want to compute (f ∗g∗g∗)(e). Note that if

∫

G
g(y)g∗(y−1x−1)dy �= 0 for some

x, then y−1x−1 ∈ supp g∗ ⊆ W for some y ∈ supp g ⊆ W , so that x ∈ V .
Thus

(f ∗ g ∗ g∗)(e) =
∫

V

Ref(x)(g ∗ g∗)(x−1)dx + i

∫

V

Imf(x)(g ∗ g∗)(x−1)dx,

which fails to be ≥ 0 since Ref(x) < 0 for all x ∈ V .
To reach a contradiction, we show that (f ∗ g ∗ g∗)(e) ≥ 0. There exists

S = S∗ ∈ C∗(G) such that S2 = T . Indeed, C∗(G) is isomorphic to C0( ̂G)
and ̂T is positive, so that there exists S ∈ C∗(G) such that ̂S = (̂T )1/2.
Choose (fn)n ⊆ L1(G) ∩ Cb(G) such that λfn → T and ‖fn − f‖∞ → 0 and
(gn)n ⊆ L1(G) so that λgn → S. Then

‖T − λgn∗g∗
n
‖ ≤ ‖S2 − λg∗

n
S‖ + ‖Sλg∗

n
− λgnλg∗

n
‖

≤ ‖S‖ · ‖S − λg∗
n
‖ + ‖λgn‖ · ‖λgn − S‖,

which converges to 0 as n → ∞. Since λfn → T we get λfn −λgn∗g∗
n
→ 0, and

hence, using ‖fn − f‖∞ → 0,

(f ∗ g ∗ g∗)(e) =
∫

G

f(x)(g ∗ g∗)(x−1)dx = lim
n→∞

(fn ∗ g ∗ g∗)(e)

= lim
n→∞

〈λfn(g), g〉 = lim
n→∞

〈λgn∗g∗
n
(g), g〉

= lim
n→∞

∫

G

(gn ∗ g)(x)(gn ∗ g)∗(x−1)dx

= lim
n→∞

‖λgn(g)‖2
2 = ‖S(g)‖2

2

≥ 0.

This contradiction shows that f(e) ≥ 0. �	

Lemma 4.4.8. Let ξ ∈ CR

c ( ̂G) and ε > 0. Then there exist functions f1, f2 ∈
C∞(G) such that ̂f1, ̂f2 ∈ CR

c ( ̂G), ̂f1 ≥ ξ ≥ ̂f2 and f1(e) − f2(e) ≤ ε.

Proof. To start with, let K be any compact subset of ̂G and η > 0. Then,
given α ∈ K, there exist neighbourhoods Uα of α and Vα of e such that
|β(x)− 1| < η for all x ∈ Vα and β ∈ Uα (Lemma 2.7.4). Since K is compact,
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the usual covering argument shows that there exists a neighbourhood V of e
in G such that |α(x) − 1| < η for all α ∈ K and x ∈ V . Then, if f ∈ C+

c (G)
is such that supp f ⊆ V and ̂f(1G) = 1, we have

| ̂f(α) − 1| =

∣

∣

∣

∣

∣

∫

G

f(x)(α(x) − 1)dx

∣

∣

∣

∣

∣

≤ sup
x∈V

|α(x) − 1| ·
∫

G

f(y)dy ≤ η

for all α ∈ K.
Let now K = supp ξ and η > 0 . Then, by the preceding paragraph, there

exists a symmetric neighbourhood V of e such that | ̂f(α) − 1| ≤ η for all
f ∈ C+

c (G) with ‖f‖1 = 1 and supp f ⊆ V . For all such f , it follows that
∣

∣

∣
f̂ ∗ f∗(α) − 1

∣

∣

∣
≤ | ̂f(α) ̂f(α) − ̂f(α)| + | ̂f(α) − 1| ≤ 2| ̂f(α) − 1| ≤ 2η.

This in turn implies the following facts.

(1) Given δ > 0, there exists a function gδ of the form gδ = fδ ∗ f∗
δ with

fδ ∈ C+
c (G) such that 1 + δ ≥ ĝδ(α) ≥ 1 − δ for all α ∈ K.

(2) There exists g of the form g = f∗f∗, where f ∈ C+
c (G), such that ĝ(α) ≥ 1

for all α ∈ K.

Let T ∈ C∗(G) with ̂T = ξ and define T1, T2 ∈ C∗(G) by

T1 = Tλgδ+δg and T2 = Tλgδ−δg.

From (1) and (2) we get

̂T1 = ξ (gδ + δg)∧ ≥ ξ(1 − δ + δĝ) ≥ ξ ≥ ̂T (1 + δ − δ ĝ) ≥ ̂T2.

Let C∗
∞(G) = {Tu : u ∈ C∞(G)} ⊆ C∗(G). Both g and gδ are of the form

h ∗ h∗ with h ∈ Cc(G). So Lemma 4.4.5 shows that

T1, T2 ∈ C∗
∞(G) and Tλg ∈ C∗

∞(G).

Thus there are f , f1, and f2 in C∞(G) such that ̂f = ̂Tλg and ̂fj = ̂Tj , j =
1, 2. Then ̂f = ̂T ̂λg = ξ ĥ ∗ h∗ is real valued and hence f(e) ∈ R by Lemma
4.4.7. Moreover

̂f1 − ̂f2 = 2δ ̂Tλg = 2δ ̂f.

The injectivity of the map h → Th from C∞(G) into C∗(G) (Lemma 4.4.4)
implies that f1 − f2 = 2δf . In particular f1(e)− f2(e) = 2δf(e). Because f(e)
is real and since the definition of g and hence Tλg and f do not depend on δ,
it follows that f1(e)− f2(e) < ε for suitably chosen δ > 0. This completes the
proof of the lemma. �	

Now we are ready to prove the inversion formula.
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Theorem 4.4.9. (Inversion formula) With suitable normalisation of the Haar
measure on ̂G, for all f ∈ C∞(G) such that ̂f has compact support and all
x ∈ G, we have

f(x) =
∫

̂G

̂f(α)α(x)dα.

Proof. We are going to define a Haar integral on Cc( ̂G). Let ξ ∈ CR

c ( ̂G). Then,
by Lemma 4.4.8

sup{f(e) : f ∈ C∞(G), ̂f ∈ Cc( ̂G), ̂f ≤ ξ}

= inf{f(e) : f ∈ C∞(G), ̂f ∈ Cc( ̂G), ̂f ≥ ξ}.
Denote this real number by I(ξ). Then I : ξ → I(ξ) is a real linear functional
on CR

c ( ̂G). To see this, let ξ, η ∈ CR

c ( ̂G) and λ ∈ R. Using the supremum in
the above equation gives I(ξ)+ I(η) ≤ I(ξ + η), and using the infimum shows
I(ξ + η) ≤ I(ξ) + I(η). Clearly, I(λξ) = λI(ξ) if λ ≥ 0. Since

I(−ξ) = sup{f(e) : f ∈ C∞(G), ̂f ∈ Cc( ̂G),− ̂f ≥ ξ}
= − inf{(−f)(e) : f ∈ C∞(G), ̂f ∈ Cc( ̂G),− ̂f ≥ ξ}
= −I(ξ),

it follows that I(λξ) = λI(ξ) for all λ ∈ R.
The functional I is positive, since if ξ ∈ C+

c ( ̂G), then

I(ξ) = inf{f(e) : f ∈ C∞(G), ̂f ∈ Cc( ̂G), ̂f ≥ ξ}

and ̂f ≥ 0 ensures that f(e) ≥ 0 by Lemma 4.4.7. Thus I extends uniquely
to a positive linear functional on Cc( ̂G).

We next observe that I is nontrivial. For that, choose T ∈ C∗(G) and
g ∈ Cc(G) such that ̂T ∈ Cc( ̂G) and T (g) �= 0. Setting h = T (g), Lemma
4.4.5 implies that h ∗ h∗ ∈ C∞(G) and

ĥ ∗ h∗ = ̂TT ∗ λ̂g∗g∗ = | ̂T |2 |ĝ|2 ∈ Cc( ̂G),

whence I(ĥ ∗ h∗) = h ∗ h∗(e) = ‖h‖2
2 > 0.

It remains to verify that I is translation invariant. Note first that, by
Lemma 4.4.6(iii), for α ∈ ̂G and f ∈ C∞(G) with ̂f ∈ Cc( ̂G),

I(Lα
̂f) = I(̂αf) = (αf)(e) = f(e) = I( ̂f).

Using this and Lemma 4.4.6(iii) again, we obtain, for arbitrary ξ ∈ CR

c ( ̂G),

I(Lαξ) = sup{I(ĝ) : g ∈ C∞(G), ĝ ∈ Cc( ̂G), ĝ ≥ Lαξ}
= sup{I(Lαĝ) : g ∈ C∞(G), ĝ ∈ Cc( ̂G), Lαĝ ≥ ξ}
= sup{I(α̂g) : αg ∈ C∞(G), α̂g = Lαĝ ∈ Cc( ̂G), α̂g ≥ ξ}
= sup{I( ̂f) : f ∈ C∞(G), ̂f ∈ Cc(G), ̂f ≥ ξ}
= I(ξ).
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Thus, for a suitably normalized Haar measure dα on ̂G, we have

I(ξ) =
∫

̂G

ξ(α)dα

for all ξ ∈ Cc( ̂G). In particular, if f ∈ C∞(G) is such that ̂f ∈ Cc( ̂G), then
by Lemma 4.4.6(ii),

f(x) = I(L̂x−1f) =
∫

̂G

L̂x−1f(α)dα =
∫

̂G

α(x) ̂f (α)dα

for all x ∈ G. �	

Let g ∈ Cc(G) and ξ ∈ L2(G). Then g ∗ ξ ∈ C0(G) ∩L2(G). The bounded
linear transformations ξ → g ∗ ξ and ξ → λg(ξ) of L2(G) agree on Cc(G).
Thus, taking ξ = T (f) where f ∈ Cc(G) and T ∈ C∗(G), we obtain that

g ∗ T (f) = λg(T (f)) = T (g ∗ f).

This simple fact is used when we deduce the Plancherel theorem from the
inversion formula and some of the above lemmas.

Theorem 4.4.10. (Plancherel theorem) Let G be a locally compact Abelian
group and let the Haar measure on ̂G be normalised so that the inversion
formula holds. Let E = C∞(G) ∩ L2(G). Then

(i) E is a dense linear subspace of L2(G).
(ii) The set ̂E = { ̂f : f ∈ E} is a dense linear subspace of L2( ̂G).
(iii) The mapping f → ̂f from E to ̂E is isometric and extends uniquely to a

Hilbert space isomorphism from L2(G) onto L2( ̂G).

Proof. (i) Clearly, E is a linear subspace of L2(G). To prove that E is dense
in L2(G), let F denote the set of all functions of the form g ∗T (h) = T (g ∗h),
where g, h ∈ Cc(G) and T ∈ C∗(G) is such that ̂T ∈ Cc( ̂G). By Lemma
4.4.5(i), F ⊆ C∞(G) and hence F ⊆ E. It therefore suffices to show that F
is dense in L2(G).

To that end, let h ∈ Cc(G), h �= 0, and ε > 0 be given. Denote by |X |
the Haar measure of a measurable subset X of G, and choose an open neigh-
bourhood U of e in G such that |U · supp h| ≤ 2 | supp h|. Since h is uniformly
continuous, we find a symmetric open neighbourhood W of e contained in U
such that

|h(yx) − h(x)| ≤ ε (2| supp h|)−1/2

for all x ∈ G and y ∈ W . For all x ∈ G and u ∈ C+
c (G) such that suppu ⊆ W

and ‖u‖1 = 1, it then follows that

|(u ∗ h)(x) − h(x)| ≤
∫

G

|u(y)| · |h(y−1x) − h(x)|dx ≤ ε(2| supp h|)−1/2
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and hence, by the choice of U , W , and u,

‖u ∗ h − h‖2
2 =

∫

W ·supp h

|(u ∗ h)(x) − h(x)|2dx ≤ ε2.

Now let V be a symmetric neighbourhood of e such that V 2 ⊆ W and let
f ∈ C+

c (G) such that ‖f‖1 = 1 and supp f ⊆ V . Then supp(f ∗ f) ⊆ W and
‖f∗f‖1 = 1. There exists T ∈ C∗(G) with ̂T ∈ Cc( ̂G) and ‖T (h)−λf(h)‖2 ≤ ε.
Summarizing, we have f ∗ T (h) = T (f ∗ h) ∈ F and

‖f ∗ T (h)− h‖2 ≤ ‖f ∗ T (h) − f ∗ λf (h)‖2 + ‖(f ∗ f) ∗ h − h‖2

≤ ‖f‖1 · ‖T (h) − λf (h)‖2 + ε

≤ 2ε.

This proves that F is dense in L2(G).
To establish (ii), let ξ ∈ L2( ̂G) and ε > 0 be given. Since C∗(G)∧ ⊇ Cc( ̂G)

and Cc( ̂G) is dense in L2( ̂G), there exists T ∈ C∗(G) such that ̂T ∈ Cc( ̂G) and
‖ ̂T − ξ‖2 ≤ ε. Arguing as in the proof of Lemma 4.4.8, there exists h ∈ Cc(G)
such that f = h ∗ h∗ satisfies

| ̂f(α) − 1| ≤ ε (‖ ̂T‖2
∞ | supp ̂T |)−1/2

for all α ∈ supp ̂T . Then T (f) ∈ E and, by Lemma 4.4.5(i),

̂T ̂f = ̂T λ̂h∗h∗ = T̂ λh∗h∗ = ̂Th∗T (h∗)

= ̂h ∗ T (h∗) = ̂λh(T (h∗) = ̂T (h ∗ h∗)

= T̂ (f).

It follows that

‖ ̂T − T̂ (f)‖2
2 =

∫

̂G

| ̂T (α)|2| ̂f(α) − 1|2dα

=
∫

supp ̂T

| ̂T (α)|2| ̂f(α) − 1|2dα

≤ ‖̂T‖2
∞ | supp ̂T | ε2 (‖̂T‖2

∞ | supp ̂T |)−1

= ε2

and hence ‖ξ − T̂ (f)‖2 ≤ ‖ξ − ̂T‖2 + ‖ ̂T − T̂ (f)‖2 ≤ 2ε.
Because F and ̂E are dense in L2(G) and L2( ̂G), respectively, for (iii) it

only remains to show that the mapping f → ̂f, F → ̂E is isometric. If f ∈ F ,
say f = S(g ∗ h), where g, h ∈ Cc(G), and S ∈ C∗(G) such that ̂S ∈ Cc( ̂G),
then f ∗ f∗ ∈ C∞(G) and

f̂ ∗ f∗ = ̂S ̂S((g ∗ h) ∗ (g ∗ h)∗)∧ ∈ Cc( ̂G)



4.4 Regularity of L1(G) 221

by Lemma 4.4.5(ii). So for each f ∈ F , f ∗ f∗ satisfies the hypotheses of
Theorem 4.4.9. Using Lemma 4.4.5, it follows that

‖f‖2
2 =

∫

G

f(x)f∗(x−1)dx = (f ∗ f∗)(e)

=
∫

̂G

f̂ ∗ f∗(α)dα =
∫

̂G

(Sλg∗h(Sλg∗h)∗)∧(α)dα

=
∫

̂G

| ̂TS(g∗h)(α)|2dα =
∫

̂G

| ̂f(α)|2dα

= ‖ ̂f‖2
2.

Thus f → ̂f is isometric on F , as required. �	

Definition 4.4.11. The unique extension of the mapping f → ̂f from E to
all of L2(G), also denoted f → ̂f , is called the Plancherel transformation and
̂f , for f ∈ L2(G), is called the Plancherel transform of f . By Theorem 4.4.10,
f → ̂f is a Hilbert space isomorphism from L2(G) onto L2( ̂G).

The Plancherel formula and linearisation imply

Corollary 4.4.12. For f, g ∈ L2(G) the Parseval identity
∫

G

f(x)g(x)dx =
∫

̂G

̂f(α)ĝ(α)dα

holds.

Corollary 4.4.13. For f ∈ L2(G) and α ∈ ̂G,

̂f∗ = ̂f, ̂f = ( ̂f)∗ and ̂αf = Lα
̂f.

Proof. It is sufficient to check all three equations for functions f in a dense
linear subspace of L2(G). Now, the first and the third equations hold in
C∞(G), and hence in E, by (i) and (iii) of Lemma 4.4.6, respectively. As
to the second, it is enough to verify that if f ∈ C∞(G) then f ∈ C∞(G) and
̂Tf (β) = ̂Tf(β−1) for all β ∈ ̂G. However, this follows immediately from the
corresponding equation for functions f in L1(G). �	

Now regularity of L1(G), our main goal in this section, follows quickly.

Theorem 4.4.14. Let G be a locally compact Abelian group. Then L1(G) is
regular.

Proof. Let E be a closed subset of ̂G and α ∈ ̂G\E. We have to find f ∈ L1(G)
such that ̂f(α) �= 0 and ̂f |E = 0. Choose a neighbourhood U of α in ̂G and a
symmetric neighbourhood V of 1G in ̂G such that UV ∩ E = ∅.

By the Plancherel theorem we find functions u and v in L2(G) with the
following properties.
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(1) û ∈ C+
c ( ̂G), supp û ⊆ U and û(α) �= 0.

(2) v̂ ∈ C+
c ( ̂G), supp v̂ ⊆ V and v̂(1G) �= 0.

Then f = uv ∈ L1(G) and, by Corollaries 4.4.12 and 4.4.13,

̂f(β) =
∫

G

u(x)v(x)β(x)dx =
∫

G

u(x)βv(x)

=
∫

̂G

û(γ) (βv)(γ)dγ =
∫

̂G

û(γ)Lβ̂v(γ)

=
∫

̂G

û(γ)̂v(βγ) =
∫

̂G

û(γ) v̂(γβ)dγ

= (û ∗ v̂)(β)

for all β ∈ ̂G. Now (1) and (2) imply that supp(û ∗ v̂) ⊆ UV ⊆ ̂G \ E and
(û ∗ v̂)(α) > 0. Thus f has the desired properties. �	

In Theorem 4.3.11 we have shown that if X is a locally compact Haus-
dorff space and A is a commutative Banach algebra, then reg(C0(X, A)) =
C0(X, reg(A)). Using regularity of L1(G), the analogous result can be estab-
lished for L1(G, A). The proof, however, is somewhat more technical. The
reader is invited to carry out two of the main steps in the exercises (Exercises
4.8.21, 4.8.22 and 4.8.23).

We conclude this section with another consequence of regularity of L1(G).

Remark 4.4.15. We already know that if G is a compact Abelian group, then
̂G is discrete. Conversely, suppose that G is a locally compact Abelian group
and that ̂G is discrete. By Theorem 4.4.14 there exists f ∈ L1(G) such that
̂f(α) = 0 for α �= 1G and ̂f(1G) = 1. Then f = f ∗ f∗ and hence f ∈ L2(G)
and f can be assumed to be continuous. The Plancherel formula implies

∫

G

(f(x) − 1) g(x)dx =
∑

α∈ ̂G

̂f(α) ĝ(α) − ĝ(1G) = 0

for all g ∈ Cc(G). This forces f(x) = 1 for all x ∈ G and hence G has to be
compact.

4.5 Spectral extension properties

Let A be a commutative Banach algebra. An extension of A is a Ba-
nach algebra B such that A is algebraically, but not necessarily continu-
ously, embedded in B. We then view A as a subalgebra of B. In this case,
σB(x) ∪ {0} ⊆ σA(x) ∪ {0} and hence rB(x) ≤ rA(x) for all x ∈ A. These
observations suggest the following definition.
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Definition 4.5.1. A commutative Banach algebra A has the spectral exten-
sion property if rB(x) = rA(x) for every extension B of A and every x ∈ A.

A is said to have the strong spectral extension property if σB(x) ∪ {0} =
σA(x) ∪ {0} holds for every commutative extension B of A and every x ∈ A.

Finally, A has the multiplicative Hahn–Banach property if, given any com-
mutative extension B of A, every ϕ ∈ Δ(A) extends to some element of Δ(B).

It is clear from the very definition that the strong spectral extension prop-
erty implies the spectral extension property. For any commutative Banach
algebra C and y ∈ C,

σC(y) \ {0} ⊆ {ψ(y) : ψ ∈ Δ(C)} ⊆ σC(y)

(Theorem 2.2.5). Therefore the multiplicative Hahn–Banach property implies
the strong spectral extension property.

We have seen in Corollary 4.2.17 that every regular semisimple commu-
tative Banach algebra A has the multiplicative Hahn–Banach property. The
purpose of this section is to characterise the semisimple commutative Banach
algebras having either of these three properties by a condition similar to, but
weaker than, regularity of A and conditions involving the Shilov boundary
∂(A) of A.

Lemma 4.5.2. For a commutative Banach algebra A, the following conditions
are equivalent.

(i) A has the spectral extension property.
(ii) Every submultiplicative norm | · | on A satisfies rA(a) ≤ |a| for all a ∈ A.

Proof. (i) ⇒ (ii) Let | · | be any submultiplicative norm on A and let (B, ‖ · ‖)
be the completion of (A, | · |). By (i), for all a ∈ A,

rA(a) = rB(a) = lim
n→∞

‖an‖1/n ≤ ‖a‖ = |a|.

(ii) ⇒ (i) Let (B, ‖·‖) be any extension of A. Then rB is a submultiplicative
norm on B and hence on A. Thus (ii) implies that rA(a) ≤ rB(a) for all a ∈ A,
as required. �	

For an element a ∈ A, define the permanent radius rp(a) of a to be

rp(a) = inf{rB(a) : B is an extension of A}.

Clearly, rp(a) ≤ rA(a). More precisely,

rp(a) = inf{|a| : | · | is a submultiplicative norm on A}.

Indeed, if | · | is any submultiplicative norm on A and B is the completion of A
with respect to | · |, then B is an extension of A and hence rp(a) ≤ rB(a) ≤ |a|
for every a ∈ A.
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Theorem 4.5.3. For a semisimple commutative Banach algebra A the fol-
lowing are equivalent.

(i) A has the spectral extension property.
(ii) If E is a closed subset of Δ(A) that does not contain the Shilov boundary

of A, then there exists an element a ∈ A such that â = 0 on E and
rp(a) > 0.

(iii) Whenever B is a commutative extension of A, every ϕ ∈ ∂(A) extends to
some element of Δ(B).

Proof. (i) ⇒ (ii) Let E be a closed subset of Δ(A) that does not contain
the Shilov boundary of A. Towards a contradiction, assume that E has the
property that for any a ∈ A, â|E = 0 implies a = 0. Then |a| = ‖â|E‖∞
defines a submultiplicative norm on A. Because A has the spectral extension
property, Lemma 4.5.2 shows that rA(a) ≤ |a|. Now, since A is semisimple,
rA(a) = ‖â‖∞ and hence ‖â‖∞ = ‖â|E‖∞ for all a ∈ A. Thus E is a boundary
for A and therefore has to contain the Shilov boundary. This contradiction
shows the existence of some nonzero element a ∈ A such that â = 0 on E.
Finally, using once more the facts that A is semisimple and has the spectral
extension property, we have rp(a) = rA(a) > 0.

(ii) ⇒ (iii) Let B be a commutative extension of A and consider the
restriction map

φ : Δ(B) ∪ {0} → Δ(A) ∪ {0}, ψ → ψ|A.

Then φ is continuous with respect to the w∗-topologies. Moreover, Δ(B)∪{0}
is a w∗-closed subset of the unit ball of B∗, because a w∗-limit of elements of
Δ(B) is either 0 or an element of Δ(B). Thus Δ(B)∪ {0} is w∗-compact and
hence so is φ(Δ(B) ∪ {0}) ⊆ Δ(A) ∪ {0}. Let

E = Δ(A) ∩ φ(Δ(B) ∪ {0}),

which is a closed subset of Δ(A). For all a ∈ A,

rB(a) = sup{|ψ(a)| : ψ ∈ Δ(B)} = sup{|ϕ(a)| : ϕ ∈ E},

since, by definition of E, φ(Δ(B)) \ E consists only of the zero functional.
Also, by definition of E, every ϕ ∈ E extends to some element of Δ(B).

It therefore suffices to show that ∂(A) ⊆ E. Assume that E does not contain
∂(A). Then, by hypothesis (ii), there exists a ∈ A such that rp(a) > 0 and
â|E = 0. Thus, by the above formula for rB(a),

0 < rp(a) ≤ rB(a) = ‖â|E‖∞ = 0.

This contradiction shows that ∂(A) ⊆ E.
(iii) ⇒ (i) Let a ∈ A and let B be any extension of A. To show that

rB(a) = rA(a), we can assume that B is commutative. In fact, if C is the
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closure of A in B, then rB(a) = rC(a). Choose ϕ ∈ ∂(A) such that |ϕ(a)| =
rA(a). By (iii), ϕ extends to some ψ ∈ Δ(B). It follows that

rA(a) = |ϕ(a)| = |ψ(a)| ≤ rB(a) ≤ rA(a),

and so (i) holds. �	

Before proceeding, we insert a consequence concerning the existence of
zero divisors.

Corollary 4.5.4. Let A be a semisimple commutative Banach algebra and
suppose that A has the spectral extension property. If A is not one-dimensional,
then A contains zero divisors.

Proof. Notice that if E is any proper closed subset of ∂(A), then, by Theorem
4.5.3, there exists a �= 0 in A such that â = 0 on E. Now ∂(A) contains at
least two elements. Indeed, this follows from Theorem 3.3.14 if ∂(A) �= Δ(A)
and is clear otherwise since A is not one-dimensional and semisimple.

Thus we can find two nonempty disjoint open subsets U and V of ∂(A).
Let E = ∂(A) \ U and F = ∂(A) \ V . Then there exist nonzero elements
a, b ∈ A such that â = 0 on E and ̂b = 0 on F . It follows that ̂ab = â ̂b = 0
on ∂(A) and hence on all of Δ(A). By semisimplicity of A, we get ab = 0. �	

An obvious method to construct an extension is as follows.

Lemma 4.5.5. Let A be a semisimple commutative Banach algebra. Then
C0(∂(A)) is an extension of A. Furthermore, if ϕ ∈ Δ(A) extends to some
element of Δ(C0(∂(A))), then ϕ ∈ ∂(A).

Proof. Because A is semisimple, the mapping a → â|∂(A) is an injective ho-
momorphism of A into C0(∂(A)). Now, every element of Δ(C0(∂(A))) equals
the evaluation of functions at some point of ∂(A). Hence, if ϕ ∈ Δ(A) extends
to some element of Δ(C0(∂(A))), then ϕ(a) = â(ψ) = ψ(a) for some ψ ∈ ∂(A)
and all a ∈ A. This proves ϕ = ψ ∈ ∂(A). �	

Both the strong spectral extension property and the multiplicative Hahn–
Banach property are stronger than (but, as Examples 4.5.8 and 4.5.10 show,
not equivalent to) the spectral extension property. Therefore the question
arises of what distinguishes the spectral extension property from either of the
other two properties. The next two theorems provide satisfactory answers.

Theorem 4.5.6. Let A be a semisimple commutative Banach algebra. Then
A has the strong spectral extension property if and only if A has the spectral
extension property and the Shilov boundary ∂(A) of A satisfies

â(∂(A)) ∪ {0} = â(Δ(A)) ∪ {0}

for all a ∈ A.
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Proof. Suppose first that A has the strong spectral extension property. Then
A has the spectral extension property. By Lemma 4.5.5, B = C0(∂(A)) is an
extension of A. For every f ∈ B,

σB(f) ∪ {0} = f(∂(A)) ∪ {0}

(Example 1.2.3). It follows that

â(∂(A)) ∪ {0} = σB(a) ∪ {0} = σA(a) ∪ {0} = â(Δ(A)) ∪ {0}

for all a ∈ A.
Now assume that, conversely, A has the spectral extension property and

satisfies â(∂(A))∪{0} = â(Δ(A))∪{0} for all a ∈ A. Let B be any commuta-
tive extension of A. If λ ∈ σA(a) and λ �= 0, then λ = â(ϕ) for some ϕ ∈ Δ(A)
(Theorem 2.2.5). By assumption ϕ can be chosen to be in the Shilov boundary
of A. Because A has the spectral extension property, by Theorem 4.5.3, (i) ⇒
(iii), ϕ extends to some element of Δ(B). It follows that λ = ϕ(a) ∈ σB(a).
This shows that σA(a) ∪ {0} ⊆ σB(a) ∪ {0} and, since the reverse inclusion
holds anyway, equality follows. �	

Theorem 4.5.7. Let A be a semisimple commutative Banach algebra. Then A
has the multiplicative Hahn–Banach property if and only if A has the spectral
extension property and the Shilov boundary of A equals Δ(A).

Proof. Suppose first that A has the multiplicative Hahn–Banach property.
Then ∂(A) = Δ(A) by Lemma 4.5.5. Let B be any extension of A and let
C be the closure of A in B. Given a ∈ A, there exists ϕ ∈ Δ(A) such that
|ϕ(a)| = rA(a). Now ϕ extends to some ψ ∈ Δ(C), and this gives

rA(a) = |ϕ(a)| = |ψ(a)| ≤ rC(a) = rB(a),

since C is a closed subalgebra of B. Thus rA(a) = rB(a).
Conversely, if A has the spectral extension property and ∂(A) equals Δ(A),

then the implication (i) ⇒ (ii) of Theorem 4.5.3 shows that A has the multi-
plicative Hahn–Banach property. �	

Recall that regularity implies the multiplicative Hahn–Banach property,
this in turn implies the strong spectral extension property and, finally, the
strong spectral extension property implies the spectral extension property.
We now present three examples showing that none of these implications can
by reversed. All these examples are constructed in a similar manner in that
they possess an ideal isomorphic to C0(Z) with quotient isomorphic to A(Y )
for properly chosen spaces Z and Y .

Example 4.5.8. Suppose that 0 < r < R and let X = {z ∈ C : |z| ≤ R} and
U = {z ∈ C : |z| < r}. Let
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A = {f ∈ C(X) : f is holomorphic onU},

endowed with the uniform norm. Because a uniform limit of holomorphic
functions is holomorphic, A is closed in C(X). Of course, the mapping x → ϕx,
where ϕx(f) = f(x) for all f ∈ A, is an embedding of X into Δ(A). To see
that every ϕ ∈ Δ(A) is of this form, let Y = {z ∈ C : |z| ≤ r} and consider
the closed ideal I = {f ∈ A : f |Y = 0} of A. Then the mapping f → f |X\Y is
an isometric isomorphism from I onto C0(X \Y ), and it follows from Tietze’s
extension theorem that A/I is isometrically isomorphic to A(Y ) (Exercise
4.8.24). Let ϕ ∈ Δ(A). If ϕ ∈ h(I) then ϕ = ϕx for some x ∈ X \ Y , whereas
if ϕ(I) �= {0}, then ϕ(g) = g(y) for all g ∈ I and some y ∈ Y (Theorem
2.6.6). In the latter case, choosing g ∈ I such that ϕ(g) �= 0, we obtain
ϕ(f) = ϕ(fg)ϕ(g)−1 = f(y) for all f ∈ A. Thus Δ(A) can be identified with
X and, with this identification, the Gelfand transform ̂f coincides with f for
every f ∈ A.

It follows from the maximum modulus principle that the Shilov boundary
of A equals the annulus {z ∈ C : r ≤ |z| ≤ R}. Now the function f(z) = z
does not attain all its values on the Shilov boundary, and so A does not have
the strong spectral extension property by Theorem 4.5.6.

Yet, A has the spectral extension property. To verify this, we apply The-
orem 4.5.3. Thus, let E be a proper closed subset of X that does not contain
the Shilov boundary. Then there exists a nonempty open subset of X \ Y
which is disjoint from E. Hence there exists f ∈ A such that f = 0 on E and
f = 1 on some nonempty open subset W of X . On the other hand, A contains
a nonzero function g with supp g ⊆ W . It follows that fg = g and hence

0 < rp(g) = rp(fg) ≤ rp(f)rp(g),

whence rp(f) ≥ 1. An application of Theorem 4.5.3, (ii) ⇒ (i), now shows
that A has the spectral extension property.

The next example shares the multiplicative Hahn–Banach property but
fails to be regular.

Example 4.5.9. Let X = D × [0, 1] and let A be the algebra of all continu-
ous complex-valued functions f on X with the property that z → f(z, 0) is
holomorphic on D◦. Endowed with the supremum norm, A is a commutative
Banach algebra. Arguing as in the previous example and taking the closed
ideal I = C0(D × (0, 1]) with quotient isomorphic to A(D), it is easily seen
that Δ(A) can be identified with X in such a way that ̂f equals f for all
f ∈ A.

In this case, however, the Shilov boundary of A is all of X . Indeed, since A
contains every continuous function on X which is zero on D × {0}, it follows
that ∂(A) ⊇ D × (0, 1] and hence ∂(A) = X . Of course, A fails to be regular
because A/I = A(D) is not regular.

However, A has the multiplicative Hahn–Banach property. Since ∂(A) =
X , this follows from Theorem 4.5.7 once we have shown that A has the spectral
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extension property. This is done by again applying Theorem 4.5.3, (ii) ⇒ (i).
Thus let E be a closed subset of X that does not contain the Shilov boundary,
which simply means that E �= X . Precisely as in Example 4.5.8, it can be
shown that there exist functions f, g ∈ A such that f = 0 on E, g �= 0, and
fg = g. Then rp(f) > 0 and condition (ii) of Theorem 4.5.3 is fulfilled.

Finally, we give an example of a commutative Banach algebra A which has
the strong spectral extension property, but does not have the multiplicative
Hahn–Banach property. As one might expect, such an example is not so easy
to discover. The one that follows involves the theory of holomorphic functions
of two complex variables.

Example 4.5.10. Let X denote the closed ball of radius 2 around zero in C2

and Y the open ball of radius 1 around zero in C2. Let

A = {f ∈ C(X) : f |Y is holomorphic}.

Endowed with the supremum norm, A becomes a commutative Banach alge-
bra. As usual, for each x ∈ X, let ϕx : A → C be the evalution at x. It is
then shown in the same way as in Example 4.5.9 that the mapping x → ϕx

is a homeomorphism between X and Δ(A) (Exercise 4.8.25). Indentifying X
and Δ(A) in this way, the Gelfand homomorphism of A is the identity. Notice
next that

∂(A) = {(z, w) ∈ C
2 : 1 ≤ |z|2 + |w|2 ≤ 4}.

Indeed, by the maximum modulus principle for holomorphic functions of two
variables, ‖f |Y ‖∞ = ‖f |∂(Y )‖ for every f ∈ A. Moreover, the ideal

I = {f ∈ A : f |Y = 0} = C0(X \ Y )

is regular, whence X \ Y = Δ(I) = ∂(I). So ∂(A) = X \ Y and, in particu-
lar, ∂(A) �= Δ(A). Therefore A cannot have the multiplicative Hahn–Banach
property (Theorem 4.5.7).

We observe next that A has the spectral extension property. To see this, we
once more apply Theorem 4.5.3, (ii) ⇒ (i). Thus, let E be a closed subset of X
not containing ∂(A). Because E does not contain X \ Y , we can find an open
subset U of X such that U ⊆ ∂(A) and U∩E = ∅. There exists f ∈ A such that
f = 0 on E and f = 1 on U . Also, there exists g ∈ A, g �= 0, with supp g ⊆ U .
Then fg = g and hence, as in the previous two examples, rp(f) ≥ 1. Theorem
4.5.3 now shows that A has the spectral extension property.

To conclude that A even has the strong spectral extension property, by
Theorem 4.5.6 we have to verify that f(∂(A)) ∪ {0} = f(Δ(A)) ∪ {0} for
every f ∈ A. It is this point where use is made of the fact that the functions
f |Y , f ∈ A, are holomorphic functions of two variables. From a well-known
property of holomorphic functions of several-variables [76, Theorem 1.2.6], it
follows that if f attains a value c at some point (z, w) ∈ Y , then there exists
(z′, w′) ∈ ∂(Y ) such that f(z′, w′) = c. Therefore
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f(Δ(A)) = f(X) = f(X \ Y ) = f(∂A),

as required.

4.6 The unique uniform norm property

The unique uniform norm property, which is the subject of this section, is
intimately related to the properties studied in Section 4.5.

Definition 4.6.1. Let A be an algebra. A submultiplicative (not necessarily
complete) norm | · | on A is called a uniform norm if it satisfies the square
property |x2| = |x|2 for all x ∈ A.

Lemma 4.6.2. Let A be a commutative Banach algebra and let | · | be a uni-
form norm on A. Then |x| ≤ rA(x) for all x ∈ A. Let

E = {ϕ ∈ Δ(A) : |ϕ(x)| ≤ |x| for all x ∈ A}.

Then E is a closed subset of Δ(A) and

|x| = sup{|ϕ(x)| : ϕ ∈ E}

for all x ∈ A.

Proof. Let (B, | · |) be the completion of A with respect to | · |. Since A is dense
in B and elements of Δ(B) are continuous, ψ|A ∈ Δ(A) for each ψ ∈ Δ(B)
and the map ψ → ψ|A is a bijection from Δ(B) onto the set of all elements of
Δ(A) which are continuous with respect to the norm | · | on A. By definition,
this set is nothing but the set E.

Because | · | is a uniform norm on B, for x ∈ B we have |x2n | = |x|2n

for
all n ∈ N and hence |x| = rB(x). For x ∈ A, it follows that

|x| = rB(x) = sup{|ϕ(x)| : ϕ ∈ E},

which is the second statement of the lemma, and also

|x| = rB(x) = sup{|ψ(x)| : ψ ∈ Δ(B)}
≤ sup{|ϕ(x)| : ϕ ∈ Δ(A)}
= rA(x),

which is the first statement of the lemma. �	

Lemma 4.6.2 leads to the following criterion for semisimplicity.

Corollary 4.6.3. For a commutative Banach algebra A the following condi-
tions are equivalent.
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(i) A is semisimple.
(ii) The spectral radius is a uniform norm on A.
(iii) A admits a uniform norm.

Proof. We have already observed in Section 2.1 that A is semisimple if and
only if rA is a (uniform) norm on A. Thus it suffices to show (iii) ⇒ (i).
If ‖ · ‖ is the original norm on A and | · | is a uniform norm on A, then
|x| ≤ rA(x) = ‖x̂‖∞ for all x ∈ A by Lemma 4.6.2. Hence x̂ = 0 implies
x = 0. �	

Definition 4.6.4. A commutative Banach algebra A is said to have the
unique uniform norm property if rA is the only uniform norm on A. A closed
subset E of Δ(A) is called a set of uniqueness for A if the assignment

x → sup{|x̂(ϕ)| : ϕ ∈ E}

defines a norm on A.

Note that if A has the spectral extension property then it has the unique
uniform norm property. In fact, let | · | be a uniform norm on A and let B be
the completion of (A, | · |). Then

rA(x) = rB(x) = lim
n→∞

|x2n

|1/2n

= |x|

for every x ∈ A.
Of course, the Shilov boundary is a set of uniqueness by definition. The

theorem below characterizes the unique uniform norm property in several
different ways.

Theorem 4.6.5. Let A be a semisimple commutative Banach algebra. Then
the following four conditions are equivalent.

(i) A has the unique uniform norm property.
(ii) The Shilov boundary ∂(A) of A is the smallest set of uniqueness.
(iii) If F is a closed subset of Δ(A) that does not contain ∂(A), then there

exists x ∈ A such that x �= 0 and x̂|F = 0.
(iv) If B is any semisimple commutative extension of A, then every element

of ∂(A) extends to a multiplicative linear functional on B.

Proof. (i) ⇒ (ii) If F ⊆ Δ(A) is a closed set of uniqueness, then

|x| = sup{|ϕ(x)| : ϕ ∈ F}

defines a uniform norm on A. By (i), rA(x) = |x| for all x ∈ A. Thus F is a
closed boundary, whence F ⊇ ∂(A).

(ii) ⇒ (iii) is obvious.
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Suppose that (iii) holds and let B be any semisimple commutative exten-
sion of A. As in the proof of the implication (ii) ⇒ (iii) of Theorem 4.5.3,
consider the map

φ : Δ(B) ∪ {0} → Δ(A) ∪ {0}, ψ → ψ|A.

Then (compare the proof of Theorem 4.5.3) the set

F = Δ(A) ∩ φ(Δ(B) ∪ {0})

is closed in Δ(A). Suppose that F does not contain ∂(A). Then, by (iii),
there exists x ∈ A, x �= 0, such that x̂ = 0 on F . Since ϕ(x) = 0 for every
ϕ ∈ φ(Δ(B)) \ F and since B is semisimple, it follows that

0 = sup{|ϕ(x)| : ϕ ∈ F} = sup{|ψ(x)| : ψ ∈ Δ(B)} = rB(x).

This contradicts x �= 0 and shows that ∂(A) ⊆ F . Hence, by definition of F ,
each ϕ ∈ ∂(A) extends to some element of Δ(B).

(iv) ⇒ (i) Let | · | be a uniform norm on A and let B be the completion
of (A, | · |). Since rB(x) = |x| for all x ∈ B, B is a semisimple commutative
extension of A. For each x ∈ A, there exists ϕx ∈ ∂(A) such that rA(x) =
|ϕx(x)|. By hypothesis (iv), there exists ψx ∈ Δ(B) extending ϕx. It follows
that rA(x) = |ψx(x)| ≤ |x| and hence |x| = rA(x) for every x ∈ A. �	

A further interesting notion that has been introduced in this context is
that of weak regularity.

Definition 4.6.6. A semisimple commutative Banach algebra A is called
weakly regular if given any proper closed subset E of Δ(A), there exists a
nonzero element a of A with â|E = 0.

The algebra studied in Example 4.5.9 is, as we have seen there, weakly
regular but not regular. An immediate consequence of the equivalence of con-
ditions (i) and (iii) in Theorem 4.6.5 is the following

Corollary 4.6.7. For a semisimple commutative Banach algebra A, the fol-
lowing conditions are equivalent.

(i) A is weakly regular.
(ii) A has the unique uniform norm property and satisfies ∂(A) = Δ(A).

From Theorem 4.6.5 we can deduce that the unique uniform norm property
is inherited by certain ideals.

Corollary 4.6.8. Let A be a semisimple commutative Banach algebra having
the unique uniform norm property. Let I be a spectral synthesis ideal of A,
that is, an ideal with the property that I = k(h(I)). Then I also has the unique
uniform norm property.
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Proof. By Theorem 4.6.5, (iii) ⇒ (i), it is sufficient to show that if F is a
closed subset of Δ(I) not containing the Shilov boundary ∂(I), then F is not
a set of uniqueness for I. Let

E = (Δ(A) \ Δ(I)) ∪ F = h(I) ∪ F.

Then E is a closed subset of Δ(A) which does not contain ∂(A) as ∂(I) ⊆
∂(A). Because A has the unique uniform norm property, by (i) ⇒ (iii) of
Theorem 4.6.5 there exists a nonzero element a ∈ A such that â|E = 0. Then
a ∈ k(h(I)) since h(I) ⊆ E. Thus a ∈ I and â|F = 0, and hence F fails to be
a set of uniqueness for I. �	

It is not known whether in the preceding corollary the hypothesis that I
be a spectral synthesis ideal can be dropped. We continue with an example
showing that the unique uniform norm property is in general not inherited
by quotient algebras A/I even when I is a spectral synthesis ideal. This is in
strong contrast to the hereditary properties of regularity.

Example 4.6.9. Let A be the commutative Banach algebra considered in
Example 4.5.8 where we now choose r = 1 and R = 2. Then A has the
spectral extension property and hence the unique uniform norm property. Let

I = {f ∈ A : f(z) = 0 for all z ∈ D}.

Then I is a spectral synthesis ideal and A/I is isometrically isomorphic to the
disc algebra A(D) which does not have the unique uniform norm property.
Indeed, every closed subset of D which has an accumulation point in D

◦ is a
set of uniqueness.

The construction in the following proposition is a generalisation of the one
performed in Example 4.5.9. The subsequent Theorem 4.6.11 shows that this
construction provides a useful method to construct examples.

Proposition 4.6.10. Let (B, ‖ · ‖B) be a unital semisimple commutative Ba-
nach algebra. Let X = Δ(B) × [0, 1] and

A = {f ∈ C(X) : f(·, 0) = ̂b for some b ∈ B}.

Then, with the norm

‖f‖ = max(‖f‖∞, ‖f(·, 0)‖B),

A is a semisimple commutative Banach algebra satisfying

Δ(A) = X and ∂(A) = Δ(A).
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Proof. It is clear that A is a semisimple commutative Banach algebra. For
ψ ∈ Δ(B) and t ∈ [0, 1], define ϕψ,t ∈ Δ(A) by ϕψ,t(f) = f(ψ, t), f ∈ A.
Then φ : (ψ, t) → ϕψ,t maps Δ(B) × [0, 1] continuously into Δ(A).

To show that φ is injective, let (ψ1, t1) and (ψ2, t2) be two distinct elements
of X . If t1 = t2 = 0, then ψ1 �= ψ2 and since B is semisimple, there exists
b ∈ B such that ψ1(b) �= ψ2(b) and f ∈ C(X), defined by f(ψ, t) = ψ(b),
belongs to A and satisfies

ϕψ1,t1(f) �= ϕψ2,t2(f).

Now, if one of t1, t2 is non-zero, say t1 �= 0, then there exists a continuous
function f : X → [0, 1] such that f(ψ1, t1) = 1 and

f |(Δ(B)×{0})∪{(ψ2,t2)} = 0.

Then also ϕψ1,t1(f) �= ϕψ2,t2(f).
Because X is compact, φ is a homeomorphism onto its range. Therefore,

it remains to show that every ϕ ∈ Δ(A) is of the form ϕ = ϕψ,t for some
ψ ∈ Δ(B) and t ∈ [0, 1]. To that end, define a closed ideal I of A by

I = {f ∈ A : f(Δ(B) × {0}) = {0}}

and a closed subalgebra J of A by

J = {f ∈ A : f(ψ, t) = f(ψ, 0) for all ψ ∈ Δ(B), t ∈ [0, 1]}.

Notice that J is isomorphic to B and I is isomorphic to C0(Δ(B) × (0, 1]). If
f ∈ A and b ∈ B such that ̂b = f on Δ(B) × {0}, then

f = (f −̂b) +̂b ∈ I + J.

Hence A is the vector space direct sum of I and J . Since J contains the
identity, ϕ is nonzero on J , and therefore there exists ψ ∈ Δ(B) such that
ϕ(f) = f(ψ, 0) for all f ∈ J. If ϕ(I) = {0}, then clearly ϕ = ϕψ,0. If ϕ(I) �=
{0}, then there exists (ρ, t) ∈ Δ(B) × (0, 1] such that ϕ(f) = f(ρ, t) for all
f ∈ I. For any f ∈ I and g ∈ J, we then have, since I is an ideal,

f(ρ, t)g(ρ, t) = fg(ρ, t) = ϕ(fg) = ϕ(f)ϕ(g) = f(ρ, t)g(ψ, 0).

Choosing f such that f(ρ, t) �= 0, we obtain that g(ρ, t) = g(ψ, 0) for all
g ∈ J. Now, let f = f1 + f2, where f1 ∈ I and f2 ∈ J, be an arbitrary element
of A. It follows that

ϕ(f) = ϕ(f1) + ϕ(f2) = f1(ρ, t) + f2(ψ, 0)
= f1(ρ, t) + f2(ρ, t)
= f(ρ, t).

This proves that ϕ = ϕs,t. Finally, it is now obvious that ∂(A) = Δ(A). �	
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Theorem 4.6.11. Let B and A be as in Proposition 4.6.10. Then

(i) A has the spectral extension property and hence the unique uniform norm
property.

(ii) A is weakly regular.
(iii) A is regular if and only if B is regular.

Proof. (i) It is shown exactly as in Example 4.5.9 that A has the spectral
extension property.

(ii) Because A has the unique uniform norm property and ∂(A) = Δ(A)
by Proposition 4.6.10, Corollary 4.6.7 shows that A is weakly regular.

(iii) Suppose first that B is not regular. Then there exists a closed subset
F of Δ(B) and ψ ∈ Δ(B) \ F such that ̂b(F ) �= {0} for every b ∈ B with
̂b(ψ) = 1. Let E = F × {0} and ϕ = ϕψ,0. Then E is a closed subset of Δ(A)
and ϕ �∈ E. Since f = ̂b on Δ(B) × {0} for every f ∈ A, it follows that there
exists no f ∈ A such that ϕ(f) = 1 and f(E) = {0}. Hence A is not regular.

Conversely, suppose that B is regular. Let E be a closed subset of Δ(A)
and (ψ, t) ∈ Δ(A) \ E. If t �= 0, then F = E ∩ (Δ(B) × (0, 1]) is closed in
Δ(B)× (0, 1] = Δ(I) and (ψ, t) ∈ Δ(I)\F. Since I = C0(Δ(B)× (0, 1]), there
exists f ∈ I such that f(ψ, t) = 1 and f(F ) = {0}. But then f(E) = {0}
since f ∈ C0(Δ(B) × (0, 1]).

Now let t = 0. There exists an open neighbourhood U of ψ in Δ(B) such
that (U × [0, ε]) ∩ E = ∅ for some ε > 0. Let F = Δ(B) \ U. Then ψ �∈ F

and since B is regular, there exists b ∈ B such that ̂b(ψ) = 1 and ̂b(F ) = {0}.
Define h ∈ A by h(ρ, s) = ̂b(ρ) for (ρ, s) ∈ Δ(A). Then h(ψ, 0) = 1 and
h(E) = {0}. Let G = Δ(B)×[ε/2, 1] ⊆ Δ(A). There exists g ∈ C(Δ(B)×[0, 1])
such that g(G) = {0} and g(Δ(B) × {0}) = {1}. Since B is unital, g ∈ A.
Let f = gh ∈ A. Then f(ψ, 0) = 1. For (ρ, s) ∈ E, we have to distinguish two
cases. If 0 ≤ s ≤ ε/2, then ρ �∈ U and hence h(ρ, s) = ̂b(ρ) = 0. If s ≥ ε/2,
then (ρ, s) ∈ G and hence g(ρ, s) = 0. Thus f(E) = {0}. This shows that A
is regular. �	

The following simple lemma is analogous to the corresponding statement
for regularity (Lemma 4.2.15).

Lemma 4.6.12. Let A be a semisimple commutative Banach algebra and B
be a dense subalgebra of A. If B has the unique uniform norm property, then
so does A.

Proof. Let | · | be a uniform norm on A. Then | · | ≤ rA(·) ≤ ‖ · ‖ on A. Let
a ∈ A and choose a sequence (bn)n in B such that ‖bn − a‖ → 0. Because B
has the unique uniform norm property, |bn| = rA(bn) for all n. Now, since the
spectral radius is subadditive,

|rA(a) − |a|| = rA(a) − |a| ≤ rA(a − bn) + rA(bn) − |a|
= rA(a − bn) + |bn| − |a|
≤ ‖a − bn‖ + |bn − a|,
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which converges to 0 as n → ∞. Thus | · | = rA(·), as required. �	

As an application of Theorem 4.6.5 we finally show that the unique uni-
form norm property behaves well with respect to forming projective tensor
products.

Theorem 4.6.13. Let A and B be commutative Banach algebras and suppose
that their projective tensor product A ̂⊗πB is semisimple. Then A ̂⊗πB has
the unique uniform norm property if and only if both A and B have the unique
uniform norm property.

Proof. Suppose first that both A and B have the unique uniform norm prop-
erty and let | · | be any uniform norm on A ̂⊗πB. Let

S = {σ ∈ Δ(A ̂⊗πB) : |σ(x)| ≤ |x| for all x ∈ A ̂⊗πB}.

Then, by Lemma 4.6.2, for every x ∈ A ̂⊗πB,

|x| = sup{|σ(x)| : σ ∈ S}.

We claim that ‖x̂‖∞ = |x| for all x ∈ A ̂⊗πB. Clearly, |x| ≤ ‖x̂‖∞ and
for the reverse inequality it suffices to show that ∂(A ̂⊗πB) ⊆ S. Suppose
that this is false. Since ∂(A ̂⊗πB) = ∂(A) × ∂(B) (Proposition 3.3.12), there
exist ϕ ∈ ∂(A) and ψ ∈ ∂(B) such that ϕ ̂⊗πψ �∈ S. Thus we can find open
neighbourhoods U of ϕ in Δ(A) and V of ψ in Δ(B) such that S∩(U×V ) = ∅.
Let E = Δ(A) \ U and F = Δ(B) \ V. Then E and F do not contain ∂(A)
and ∂(B), respectively.

Because A and B have the unique uniform norm property, by Theorem
4.6.5, (i) ⇒ (iii), there exist nonzero elements a of A and b of B such that
â = 0 on E and ̂b = 0 on F . Since

S ⊆ (E × Δ(B)) ∪ (Δ(A) × F ),

it follows that σ(a⊗ b) = 0 for all σ ∈ S. Thus a⊗ b = 0. This contradicts the
fact that a �= 0 and b �= 0. Hence ∂(A ̂⊗πB) ⊆ S, as was to be shown.

Conversely, let A ̂⊗πB have the unique uniform norm property. To show
that then A has this property, we apply the equivalence of conditions (i) and
(iii) in Theorem 4.6.5.

Let E be a closed subset of Δ(A) which does not contain ∂(A). Then
E × Δ(B) does not contain ∂(A ̂⊗πB). Therefore there exists u ∈ A ̂⊗πB
such that u �= 0 and û|E×Δ(B) = 0. Select ϕ ∈ Δ(A) and ψ ∈ Δ(B) with
(ϕ ̂⊗πψ)(u) �= 0 and let a = φψ(u), where φψ is the homomorphism from
A ̂⊗πB to A satisfying φψ(x ⊗ y) = ψ(y)x for all x ∈ A and y ∈ B (Lemma
2.11.5). Then, for any representation u =

∑∞
j=1 aj ⊗ bj, aj ∈ A, bj ∈ B, of u,

ϕ(a) = ϕ

⎛

⎝

∞
∑

j=1

ψ(bj)aj

⎞

⎠ = (ϕ ̂⊗πψ)(u).
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On the other hand, for every ρ ∈ E, ρ(a) = (ρ ̂⊗πψ)(u) = 0. Thus E satisfies
condition (iii) of Theorem 4.6.5. It follows that A has the unique uniform
norm property. �	

4.7 Regularity of Beurling algebras

In Section 4.4 we have shown that L1-algebras of locally compact Abelian
groups are always regular, and hence they have the unique uniform norm
property. We begin this section with a simple example which shows in a very
explicit manner how the unique uniform norm property may fail for Beur-
ling algebras. However, perhaps unexpectedly, it turns out that for Beurling
algebras satisfaction of the unique uniform norm property already implies
regularity.

Example 4.7.1. Let ω be a weight function on the group Z of integers and
let A = l1(Z, ω). Let, as in Proposition 2.8.8,

R+ = inf{ω1/n
n : n ∈ N} and R− = sup{ω1/m

m : m ∈ −N}.

Then R− ≤ R+ and we know from Proposition 2.8.8 that Δ(A) can be iden-
tified with the annulus

{z ∈ C : R− ≤ |z| ≤ R+}

by means of the map z → ϕz , where ϕz(f) =
∑

n∈Z
f(n)zn. For R− ≤ r ≤ R+,

let Kr = {z ∈ C : |z| = r}. Suppose that f ∈ A satisfies ϕz(f) = 0 for all
z ∈ Kr. Then ϕz(δm ∗ f) = 0 for all m ∈ Z and z ∈ Kr, and hence

0 =
∫ 2π

0

ϕreit(δm ∗ f)dt

=
∑

n∈Z

(δm ∗ f)(n)rn

∫ 2π

0

e−intdt = (δm ∗ f)(0)

= f(m).

This shows that f = 0. Thus every such circle Kr is a set of uniqueness
and therefore A = l1(Z, ω) does not have the unique uniform norm property
whenever R− < R+.

Recall from Section 2.8 (Theorems 2.8.2 and 2.8.5) that Δ(L1(G, ω)) is
homeomorphic to the set ̂G(ω) of ω-bounded generalised characters on G by
the map γ → ϕγ , where

ϕγ(f) =
∫

G

f(x)γ(x)dx (f ∈ L1(G, ω)),
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and ̂G(ω) is equipped with the topology of uniform convergence on compact
subsets of G. In the sequel we make use of the fact that if δ ∈ ̂G(ω) and
α ∈ ̂G, then δα ∈ ̂G(ω).

Proposition 4.7.2. Suppose that L1(G, ω) has the unique uniform norm
property and let γ ∈ ̂G(ω). Then

(i) The map α → γα is a homeomorphism from ̂G onto ̂G(ω).
(ii) ∂(L1(G, ω)), the Shilov boundary of L1(G, ω), coincides with ̂G(ω).

Proof. Note first that for each δ ∈ ̂G(ω), the assignment

f → |f |δ = sup{|ϕδα(f)| : α ∈ ̂G}

defines a uniform norm on L1(G, ω) since L1(G) is semisimple, δ(x) �= 0 for
all x ∈ G and ϕδα(f) = ϕα(δ · f). The map α → γα from ̂G into ̂G(ω) is
continuous and injective. Moreover, the set γ · ̂G is closed in ̂G(ω). Indeed,
if β ∈ ̂G(ω) and (αλ)λ is a net in ̂G such that γαλ → β in ̂G(ω), then
αλ = γ−1(γαλ) → γ−1β uniformly on compact subsets of G, and this implies
that γ−1β ∈ ̂G.

Assume that γ ̂G �= ̂G(ω) and choose δ ∈ ̂G(ω) \ γ ̂G. Then, since ̂G is a
group, γ ̂G∩ δ ̂G = ∅. Because γ ̂G and δ ̂G are both closed sets of uniqueness
for L1(G, ω) and L1(G, ω) has the unique uniform norm property, Theorem
4.6.5 yields that ∂(L1(G, ω)) ⊆ γ ̂G ∩ δ ̂G, which is empty. This contradiction
shows that γ ̂G = ̂G(ω). Finally, since the function |γ| is bounded away from
zero on every compact subset of G, it is easy to see that the map β → γ−1β
from ̂G(ω) onto ̂G is continuous. Thus α → γα is a homeomorphism.

To prove (ii), let E ⊆ ̂G(ω) = γ ̂G be a closed boundary for L1(G, ω).
Then F = {α ∈ ̂G : γα ∈ E} is closed in ̂G and for every f ∈ L1(G) we have
γ−1f ∈ L1(G, ω) and

‖ ̂f‖∞ = sup
{

|γ̂−1f(γα)| : α ∈ ̂G
}

= ‖γ̂−1f‖∞

= ‖γ̂−1f |E‖∞ = sup{| ̂f(α)| : α ∈ F}
= ‖ ̂f |F ‖∞.

Since L1(G) is regular, it follows that F = ̂G and hence E = ̂G(ω). �	

Theorem 4.7.3. Let G be a locally compact Abelian group and ω a weight
on G. Then L1(G, ω) has the unique uniform norm property if and only if
L1(G, ω) is regular.

Proof. Since for every semisimple commutative Banach algebra regularity
implies the unique uniform norm property, we only have to show the ‘only
if’ part.
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Let E be a proper closed subset of ̂G(ω) and let γ ∈ ̂G(ω) \ E. By the
preceding lemma, the map α → γα is a homeomorphism between ̂G and ̂G(ω).
Thus F = {α ∈ ̂G : γα ∈ E} is a closed subset of ̂G which does not contain
the trivial character 1G. Choose a symmetric open neighbourhood U of 1G in
̂G such that F ∩ U2 = ∅. Then E ∩ γ U2 = ∅.

Because L1(G, ω) is semisimple (Theorem 2.8.10), has the unique uni-
form norm property, and satisfies ∂(L1(G, ω)) = ̂G(ω) (Proposition 4.7.2(ii)),
L1(G, ω) is weakly regular by Corollary 4.6.7. Thus there exists a nonzero
function g ∈ L1(G, ω) such that ĝ(δ) = 0 for all δ ∈ ̂G(ω) \ γ U . Since g is
nonzero, ĝ(γβ) �= 0 for some β ∈ U. Now, let f = βg. Then f ∈ L1(G, ω) and
̂f(γ) = ĝ(γβ) �= 0. Moreover, ̂f(δ) = ĝ(δβ) = 0 for all δ ∈ E since

βE ∩ γU = β(E ∩ βγU) ⊆ β(E ∩ γU2) = ∅.

This shows that L1(G, ω) is regular. �	

Passing to the problem of when L1(G, ω) is regular, we now introduce a
condition on the weight ω that turns out to entail regularity of L1(G, ω).

Definition 4.7.4. Let G be a locally compact Abelian group. A weight ω on
G such that ω(x) ≥ 1 for all x ∈ G is said to be nonquasianalytic if

∞
∑

n=−∞

ln ω(xn)
1 + n2

< ∞

for all x ∈ G.

Lemma 4.7.5. Let G be a nonquasianalytic weight on G. Then

lim
n→∞

ω(xn)1/n = lim
n→∞

ω(x−n)−1/n = 1

for all x ∈ G. In particular, ̂G(ω) = ̂G.

Proof. Suppose the statement is false, so that limn→∞ ω(xn)1/n > 1 for some
x ∈ G. Then there exist some δ > 0 and N ∈ N such that ω(xn)1/n ≥ 1 + δ
for all n ≥ N . For all such n,

ln ω(xn)
1 + n2

=
ln ω(xn)1/n

1
n + n

≥ ln(1 + δ)
1
n + n

.

However, this is impossible since ω is nonquasianalytic. Thus limn→∞ ω(xn)1/n

≤ 1 for all x ∈ G.
Since ω(y) ≥ 1 for all y ∈ G, it follows that limn→∞ ω(xn)1/n = 1 for all

x ∈ G and, as noted in Remark 2.8.3, this implies that ̂G(ω) = ̂G. Finally, we
also get

lim
n→∞

ω(x−n)−1/n =
(

lim
n→∞

ω((x−1)n)1/n
)−1

= 1

for every x ∈ G. �	
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Clearly, each bounded weight is nonquasianalytic, and in this case L1(G, ω)
= L1(G) as algebras. Using the next two lemmas it is very easy to construct
unbounded weights which are nonquasianalytic.

Lemma 4.7.6. A weight ω on Z is nonquasianalytic if and only if

∞
∑

n=−∞

ln ω(n)
1 + n2

< ∞.

Proof. For x ∈ N, this condition implies that

∞
∑

n=−∞

ln ω(nx)
1 + n2

≤
∞
∑

n=−∞

ln(ω(n)x)
1 + n2

= x ·
∞
∑

n=−∞

ln ω(n)
1 + n2

< ∞.

If x ∈ −N, apply the preceding inequality with −x in place of x and use that

∞
∑

n=−∞

ln(ω(−n))
1 + n2

=
∞
∑

n=−∞

ln ω(n)
1 + n2

.

Conversely, if ω is nonquasianalytic, taking x = 1 in Definition 4.7.4 shows
that

∑∞
n=−∞(1 + n2)−1 ln ω(n) < ∞. �	

In the following, for each t ∈ R, �t� will denote the greatest integer ≤ t.

Lemma 4.7.7. A weight ω on R is nonquasianalytic if and only if
∫ ∞

−∞

ln ω(t)
1 + t2

dt < ∞.

Proof. Let C = sup{ω(s) : 0 ≤ s ≤ 1}. Then C < ∞ and

ω(t) ≤ ω(�t�)ω(t − �t�) ≤ Cω(�t�)

for all t. This implies
∫ ∞

−∞

ln ω(t)
1 + t2

dt =
∞
∑

k=−∞

∫ k+1

k

ln w(t)
1 + t2

dt

≤ C
∞
∑

k=−∞
ln ω(k)

∫ k+1

k

1
1 + t2

dt

≤ C

∞
∑

k=−∞

ln ω(k)
1 + k2

.

Thus nonquasianalyticity implies that
∫∞
−∞(1 + n2)−1 ln ω(n)dt < ∞.

Conversely, suppose that ω satisfies this latter condition. It suffices to show
that

∑∞
n=−∞(1 + n2)−1 ln ω(n) < ∞ for every x > 0. Let m ∈ N0 such that

m < x ≤ m + 1. Then
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∞
∑

n=−∞

ln ω(nx)
1 + n2

≤
∞
∑

n=−∞

ln(ω(nm)ω(n(x − m)))
1 + n2

=
∞
∑

n=−∞

ln ω(nm)
1 + n2

+
∞
∑

n=−∞

ln ω(n(x − m))
1 + n2

≤
∞
∑

n=−∞

ln(ω(n)m)
1 + n2

+
∞
∑

n=−∞

ln ω(n(x − m))
1 + n2

= m
∞
∑

n=−∞

ln ω(n)
1 + n2

+
∞
∑

n=−∞

ln ω(n(x − m))
1 + n2

.

Thus we can even assume that 0 < x ≤ 1. Then, since

ω(nx) ≤ ω(tx)ω((n − t)x) ≤ Cω(tx)

for all t ∈ [n − 1, n], it follows that

∞
∑

n=−∞

ln ω(nx)
1 + n2

≤ C

∞
∑

n=−∞

∫ n

n−1

ln ω(tx)
1 + t2

dt

=
C

x

∫ ∞

−∞

ln ω(s)
1 + (s/x)2

ds = Cx

∫ ∞

−∞

ln ω(s)
s2 + 1/x2

ds

≤ Cx

∫ ∞

−∞

ln ω(s)
1 + s2

ds < ∞.

This completes the proof that ω is nonquasianalytic. �	

With regard to the proofs of the following three lemmas and of Theorem
4.7.11, we point out that if ω is a nonquasianalytic weight on G and hence
̂G(ω) = ̂G, in order to establish regularity of L1(G, ω) it suffices to show that,
given any neighbourhood U of 1G in ̂G, there exists f ∈ L1(G, ω) such that
̂f(1G) �= 0 and ̂f(α) = 0 for all α ∈ ̂G \ U .

Lemma 4.7.8. Let ω be a nonquasianalytic weight function on R. Then
L1(R, ω) is regular.

Proof. The main tool in the proof will be the well-known Paley–Wiener the-
orem. Define a function h on R by

h(t) =
1

(1 + t2)ω(t)
(t ∈ R).

Then h ∈ L1(R) ∩ L2(R) since ω(t) ≥ 1. Moreover, since

ln(1 + t2)
1 + t2

≤ t2/3

1 + t2
≤ 1

t4/3
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for large t and since ω is nonquasianalytic, Lemma 4.7.7 shows that
∫ ∞

−∞

| ln h(t)|
1 + t2

dt =
∫ ∞

−∞

ln(1 + t2)
1 + t2

dt +
∫ ∞

−∞

ln ω(t)
1 + t2

dt < ∞.

Then, by the Paley–Wiener theorem, there exists a function g ∈ L2(R) such
that |g(t)| = h(t) almost everywhere and the Plancherel transform of g van-
ishes almost everywhere on (−∞, 0). Since g ∈ L1(R)∩L2(R), the Plancherel
transform of g equals the Fourier transform ĝ of g and ĝ is continuous. So
ĝ(s) = 0 for all s ≤ 0. Let

s0 = inf{s ∈ R : ĝ(s) �= 0}.

Replacing g by the function t → g(t)eis0t if necessary, we can assume that
s0 = 0. It suffices now to show that given any ε > 0, there exists f ∈ L1(R, ω)
such that ̂f(0) �= 0 and ̂f(s) = 0 when |s| ≥ ε. Since s0 = 0, there exists
0 < δ ≤ ε such that ĝ(δ) �= 0. Define functions f1 and f2 on R by

f1(t) = g(t)eiδt and f2(t) = f1(t) = g(t)e−iδt.

Then the function f = f1 ∗ f2 ∈ L1(R) satisfies ̂f(0) �= 0 and ̂f(s) = 0
whenever |s| ≥ ε. Indeed,

̂f(s) = ̂f1(s) ̂f2(s) = ĝ(δ + s) ĝ(δ − s)

and so ̂f(s) = 0 whenever |s| ≥ δ. Moreover, ̂f(0) = |ĝ(δ)|2 �= 0.
Finally, we show that f ∈ L1(R, ω). We have

|f(t)| ≤ (|f1| ∗ |f2|)(t) = (|g| ∗ |g|)(t) = (h ∗ h)(t)

for all t ∈ R, and hence

|f(t)| ≤
∫ ∞

−∞

1
(1 + u2)(1 + (t − u)2)ω(u)ω(t − u)

du

≤ 1
ω(t)

∫ ∞

−∞

1
(1 + u2)(1 + (t − u)2)

du

=
2π

ω(t)(t2 + 4)
.

Thus fω ∈ L1(R), as required. �	

Lemma 4.7.9. Let ω be a nonquasianalytic weight on the integer group Z.
Then l1(Z, ω) is regular.

Proof. We reduce this case to that of the real line. To this end, we first extend
ω to R by setting

ω1(t) = ω(�t�) + (t − �t�)
(

ω(�t� + 1) − ω(�t�)
)

,
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Since we will have lost submultiplicativity through interpolation, we now put

ω̃(t) = sup
{

ω1(t + s)ω1(0)
ω1(s)

: s ∈ R

}

.

Then ω̃(t) ≥ ω1(t) ≥ 1 for all t ∈ R and ω̃(k) ≥ ω1(k) = ω(k) for k ∈ Z. We
show next that

ω̃(t1 + t2) ≤ ω̃(t1)ω̃(t2)

for all t1, t2 ∈ R. By definition of ω̃, it suffices to verify that

ω̃(t1)ω̃(t2) ≥
w1(t1 + t2 + s)ω1(0)

ω1(s)

for all s ∈ R. Now, given s, let s1 = t2 + s and s2 = s. Then

ω̃(t1)ω̃(t2) ≥
w1(t1 + s1)ω1(0)

ω1(s1)
· w1(t2 + s2)ω1(0)

ω1(s2)

=
ω1(t1 + t2 + s)

ω1(s)
· ω1(0)2

≥ ω1(t1 + t2 + s)
ω1(s)

· ω1(0).

Thus ω̃(t1)ω̃(t2) ≥ ω̃(t1 + t2). Observe next that, with C = max{ω(0), ω(1)},
we have

ω̃(t) ≤ Cω(�t�)

for all t ∈ R. This implies

∫ ∞

−∞

ln ω̃(t)
1 + t2

dt ≤ C

∞
∑

k=−∞

∫ k+1

k

ln ω(�t�)
1 + t2

dt

≤ C
∞
∑

k=−∞

∫ k+1

k

ln ω(k)
1 + k2

dt

= C

∞
∑

k=−∞

ln ω(k)
1 + k2

< ∞.

Thus, by Lemma 4.7.7, ω̃ is a nonquasianalytic weight on R and therefore,
since L1(R, ω̃) is regular by Lemma 4.7.8, given any 0 < ε < π, there exists
g ∈ L1(R, ω̃) such that ĝ(0) �= 0 and ĝ(y) = 0 for all y ∈ R with |y| ≥ ε.
Actually, as shown in the proof of Lemma 4.7.8, g can be constructed in such
a way that

|g(t)|ω̃(t) ≤ 1
1 + t2

for all t ∈ R. Because
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|g(k)| · ω(k) ≤ |g(k)|ω̃(k) ≤ 1
1 + k2

for all k ∈ Z, we get that g|Z ∈ l1(Z, ω). The Fourier transform of g|Z is given
by the Fourier series

̂g|Z(z) =
∞
∑

k=−∞
g(k)z−k.

For each l ∈ Z, it follows that
∫ π

−π

̂g|Z(eit)eiltdt =
∞
∑

k=−∞
g(k)

∫ π

−π

eit(l−k)dt

= 2πg|Z(l) = 2πg(l)

=
∫ ∞

−∞
ĝ(t)eiltdt

=
∫ π

−π

ĝ(t)eiltdt.

Since the finite linear combinations of functions t → ailt, l ∈ Z, are dense in
L2[−π, π], we obtain that

̂g|Z(eit) = ĝ(t)

for all |t| ≤ π. Hence ̂g|Z vanishes on the complement of the arc determined
by e−iε and eiε. Finally, ̂g|Z(1G) = ĝ(0) �= 0. �	

At the current stage we know that L1(G, ω) is regular for any non-
quasianalytic weight whenever G equals R of Z or when G is compact. The
following lemma provides a natural tool to enlarge the class of groups for
which regularity can be shown.

Lemma 4.7.10. Let G1 and G2 be locally compact Abelian groups and let
G = G1 × G2. Suppose that L1(G1, ω1) and L1(G2, ω2) are regular for all
nonquasianalytic weights ω1 and ω2, respectively. Then L1(G, ω) is regular
for every nonquasianalytic weight ω on G.

Proof. Let ω be given and define ω1 and ω2 by ω1(x1) = ω(x1, e2), x1 ∈ G1,
and ω2(x2) = ω(e1, x2), x2 ∈ G2, where e1 and e2 are the identities of G1 and
G2, respectively. Then clearly both ω1 and ω2 are non-quasianalytic weights.
For any neighbourhood V1 of 1G1 in ̂G1 and V2 of 1G2 in ̂G2, there exist
f1 ∈ L1(G1, ω1) and f2 ∈ L1(G2, ω2) satisfying ̂f1(1G1) �= 0, ̂f1 = 0 on ̂G1\V1,
and similarly for f2. Define f on G1 × G2 by f(x1, x2) = f1(x1)f2(x2). Then
f ∈ L1(G, ω) since

ω(x1, x2) ≤ ω(x1, e2)ω(e1, x2) = ω1(x1)ω2(x2).

Furthermore, ̂f(1G) = ̂f1(1G1) ̂f2(1G2) �= 0 and ̂f vanishes outside of V1 × V2.

These sets form a neighbourhood basis of 1G in ̂G. Hence it follows that
L1(G, ω) is regular. �	
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Using Lemmas 4.7.8 through 4.7.10 and employing the structure theorem
for compactly generated locally compact Abelian groups, we can now prove
the result at which we are aiming.

Theorem 4.7.11. Let G be any locally compact Abelian group and ω a non-
quasianalytic weight on G. Then L1(G, ω) is regular.

Proof. Let V be any relatively compact neighbourhood of 1G in ̂G. Let ϕ be a
continuous function on ̂G such that ϕ(1G) = 1 and ϕ = 0 on ̂G \ V. Since the
image of Cc(G) under the Gelfand homomorphism is dense in C0( ̂G), there
exists k ∈ Cc(G) such that ‖ϕ − ̂k‖∞ ≤ 1

3 . Let

h = ̂k(1G)−1k ∈ Cc(G).

Then ̂h(1G) = 1 and, for all α ∈ ̂G \ V,

|̂h(α)| = |̂k(1G)|−1|̂k(α)| ≤ |̂k(1G)|−1
(

‖̂k − ϕ‖∞ + |ϕ(α)|
)

≤ 1
3
|̂k(1G)|−1 ≤ 1/3

2/3

=
1
2
.

Now, choose a compactly generated open subgroup H of G containing the sup-
port of h. By the structure theorem for compactly generated locally compact
Abelian groups (Theorem A.5.5),

H = K × R
p × Z

q,

where p, q ∈ N0 and K is a compact group. Since ω|H is nonquasianalytic,
combining Lemmas 4.7.8 through 4.7.10, we conclude that L1(H, ω|H) is reg-
ular. Let the Haar measure of H be the Haar measure of G restricted to H ,
and let

U =
{

γ ∈ ̂H : |̂h(γ)| >
1
2

}

.

Then U is an open neighbourhood of 1H in ̂H since ̂h|H(1H) = ̂h(1G) = 1.
Because L1(H, ω|H) is regular, there exists g ∈ L1(H, ω|H) satisfying ĝ(1H) �=
0 and ĝ(γ) = 0 for all γ ∈ ̂H \ U. Let f : G → C be defined by f(x) = g(x)
for x ∈ H and f(x) = 0 for x �∈ H. Then f ∈ L1(G, ω) and ̂f(α) = ĝ(α|H) for
all α ∈ ̂G. If α �∈ V, then

∣

∣

∣

∣

∫

H

h(x)α|H(x)dx

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

G

h(y)α(y)dy

∣

∣

∣

∣

=
∣

∣

∣

̂h(α)
∣

∣

∣ ≤
1
2
,

whence α|H �∈ U. This implies that ̂f(α) = ĝ(α|H) = 0 for all α ∈ ̂G \ V .
Finally, ̂f(1G) = ĝ(1H) �= 0, and this completes the proof of the theorem. �	

We finish this section by just mentioning that the converse to Theo-
rem 4.7.11 also holds. That is, regularity of L1(G, ω) implies that ω is non-
quasianalytic.
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4.8 Exercises

Exercise 4.8.1. Prove that the only hk-continuous functions in the disc al-
gebra A(D) are the constant functions.

Exercise 4.8.2. Let A be a commutative Banach algebra and I a closed ideal
of finite codimension of A. Show that h(I) is finite. Why does the converse
not hold?

Exercise 4.8.3. Let A be a commutative Banach algebra and U an open
subset of Δ(A). Suppose that the Gelfand and the hull-kernel topologies agree
on U . Let C be a subset of U which is compact in the Gelfand topology. Prove
that C is hk-closed in Δ(A).
(Hint: Assuming that there exists ϕ ∈ h(k(C)) \ C, find an element a ∈
k(Δ(A) \ U) such that â = 1 on C and â(ϕ) = 0.)

Exercise 4.8.4. Prove that Lipα[0, 1], the algebra of Lipschitz functions of
order α (Exercise 1.6.11), is regular.

Exercise 4.8.5. Let A be a commutative Banach algebra and suppose that
Δ(A) is totally disconnected. Apply Shilov’s idempotent theorem to show that
A is regular.
(Hint: Given a closed subset E of Δ(A) and ϕ ∈ Δ(A) \ E, there exists an
open and closed neighbourhood V of ϕ such that V ∩ E = ∅).

Exercise 4.8.6. Let A be a semisimple commutative Banach algebra with
the property that the product of any two nonzero elements of A is nonzero.
Prove that if A is regular, then A is at most one-dimensional.

Exercise 4.8.7. Use the conclusion of Exercise 4.8.6 to show that the con-
volution algebras L1(R+) and l1(Z+) are not regular. For generalisations, see
Exercises 4.8.39 and 4.8.40.

Exercise 4.8.8. Let G be a nondiscrete locally compact Abelian group.
Then the so-called Wiener–Pitt phenomenon asserts that there exists a non-
invertible measure μ ∈ M(G) with the property that the Fourier–Stieltjes
transform μ̂ of μ satisfies |μ̂(α)| ≥ 1 for all α ∈ ̂G. Deduce that ̂G is not dense
in Δ(M(G)) with respect to the Gelfand topology.

Exercise 4.8.9. Show that the measure algebra M(G) of a nondiscrete locally
compact Abelian group G fails to be regular.
(Hint: Use Exercise 4.8.8 and Lemma 4.1.10.)

Exercise 4.8.10. Let A be a commutative Banach algebra with bounded
approximate identity and let

M00(A) = {T ∈ M(A) : ̂T |Δ(M(A))\Δ(A) = 0}.

Show that M00(A) is regular if and only if A is regular.
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Exercise 4.8.11. Let A be a semisimple (and hence faithful) commutative
Banach algebra and let T ∈ M(A). Then

(i) σM(A)(T ) = ̂T (Δ(M(A)).

(ii) σM(A)(T ) = ̂T (Δ(A)) if ̂T is hk-continuous on Δ(M(A)).

Exercise 4.8.12. Let A and B be unital commutative Banach algebras with
identities eA and eB, respectively, and suppose that A is semisimple and
regular. Let φ : A → B be an injective homomorphism such that φ(eA) = eB.
Use results of Section 4.2 to show that σB(φ(x)) = x̂(Δ(A)) for every x ∈ A.

Exercise 4.8.13. Let A and B be commutative Banach algebras such that B
is unital and A is nonunital. Let φ : A → B be an injective homomorphism.
Show that σB(φ(x)) = x̂(Δ(A)) for every x ∈ A.
(Hint: Extend φ to an injective homomorphism from the unitisation Ae into
B.)

Exercise 4.8.14. Let A be a semisimple and symmetric commutative Banach
∗-algebra. View Δ(A) as a subset of Δ(M(A)). For T ∈ M(A), define fT on

Δ(A) by fT (ϕ) = ̂T (ϕ).
(i) Show that fT · ̂A ⊆ ̂A. Hence there exists a unique element T ∗ of M(A)

such that T̂ ∗(x)(ϕ) = fT (ϕ)x̂(ϕ) for all ϕ ∈ Δ(A) and x ∈ A (Proposition
2.2.16).

(ii) Assume that M(A) is regular. Show that the involution T → T ∗ turns
M(A) into a symmetric Banach ∗-algebra.

Exercise 4.8.15. Let A be a symmetric commutative Banach ∗-algebra.
Then both the greatest regular subalgebra and the greatest regular ideal of A
are ∗-algebras.

Exercise 4.8.16. Let U be a connected open subset of the complex plane
and A a unital closed subalgebra of H∞(U). Show that reg(A) consists only
of the constant functions.

Exercise 4.8.17. Let A be a commutative Banach algebra and U an open
subset of Δ(A). Suppose that U is hk-dense in Δ(A) and that the Gelfand
and the hull-kernel topologies agree on U . Let

A0(U) = {a ∈ A : â|U ∈ C0(U)},

which is a closed ideal of A. Show that

k(Δ(A) \ U) ⊆ reg(A0(U)).

(Hint: Use Theorem 4.2.3 to conclude that k(Δ(A) \ U) is regular.)
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Exercise 4.8.18. Let A be a commutative Banach algebra and n ∈ N. Show
that

reg(Cn([0, 1], A)) = Cn([0, 1], reg(A)).

(Hint: Prove by induction on k that Ck[0, 1] ⊗ A is dense in Ck([0, 1], A),
k ∈ N.)

Exercise 4.8.19. Let A be a regular and semisimple commutative Banach
algebra with bounded approximate identity. View A as a closed ideal of the
multiplier algebra M(A), and define two subalgebras M0(A) and M00(A) by

M0(A) = {T ∈ M(A) : ̂T |Δ(A) ∈ C0(Δ(A))}

and
M00(A) = {T ∈ M(A) : ̂T |Δ(M(A))\Δ(A) = 0}.

Prove that reg(M0(A)) = M00(A).

Exercise 4.8.20. Let G be a locally compact Abelian group, M(G) the mea-
sure algebra of G, and Md(G) the subalgebra consisting of all discrete mea-
sures. Show that reg(M(G)) contains Md(G). For any closed subgroup H of G,
consider L1(H) as a closed subalgebra of M(G). Then L1(H) ⊆ reg(M(G)).

Let A be a commutative Banach algebra and G a locally compact Abelian
group. It was shown in [69] that reg(L1(G, A)) = L1(G, reg(A)). The conclu-
sions of the next three exercises constitute major steps of the proof.

Exercise 4.8.21. Let G be a locally compact Abelian group and A a com-
mutative Banach algebra. Let α ∈ ̂G and define φα : L1(G, A) → A by

φα(f) =
∫

G

α(x)f(x)dx (f ∈ L1(G, A)).

Prove that φα(reg(L1(G, A))) ⊆ reg(A).

Exercise 4.8.22. Let B be a regular commutative Banach algebra and let G
be an Abelian locally compact group. Let φ : L1(G) ⊗ B → L1(G, B) be the
unique linear map such that, for all f ∈ L1(G) and b ∈ B,

φ(f ⊗ b)(x) = f(x) b

for almost all x ∈ G.
(ii) Show that φ is a homomorphism and extends to a homomorphism of

the projective tensor product L1(G) ̂⊗πB into L1(G, B).
(iii) Adapt the corresponding part of the proof of Theorem 4.3.11 to show

that φ(Cc(G) ⊗ B) is dense in L1(G, B).
(iii) Conclude that L1(G, B) is regular.
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Exercise 4.8.23. Let G and A be as in Exercise 4.8.21. Let f ∈ reg(L1(G, A))
and suppose that f is continuous. Show that ψ(f(x)) = 0 for all x ∈ G when-
ever ψ ∈ A∗ is such that ψ(reg(A)) = {0}. Conclude that f ∈ L1(G, reg(A)).

Exercise 4.8.24. In Example 4.5.8, fill in the details to show that A/I is
isometrically isomorphic to A(Y ).

Exercise 4.8.25. Let X and A be as in Example 4.5.10. Carry out the proof
of the statement that the point evaluation map x → ϕx is a homeomorphism
from X onto Δ(A).

Exercise 4.8.26. Let X be a locally compact Hausdorff space and A a
semisimple commutative Banach algebra. Show that C0(X, A) has the unique
uniform norm property if and only if the same is true of A.

Exercise 4.8.27. Let | · |1 and | · |2 be two equivalent uniform norms on a
Banach algebra A. Show that | · |1 and | · |2 are equal.

Exercise 4.8.28. Let (A, ‖ · ‖) be a semisimple commutative Banach algebra
and let I be a dense ideal in A which is a Banach algebra under some norm
‖ · ‖0. If A has the unique uniform norm property, then the same is true of
I. To verify this, let | · | be a uniform norm on I and prove successively the
following assertions.

(i) Since I is an ideal in A, we have |x| ≤ rI(x) = rA(x) ≤ ‖x‖ for all
x ∈ I.

(ii) | · | extends (uniquely) to a uniform seminorm on A, also denoted | · |.
(iii) Let x ∈ A such that |x| = 0 and choose a sequence (xn)n in I with

‖xn − x‖ → 0. Show that xxn = 0 and that this forces x = 0.
(iv) Deduce that |x| = rI(x) for every x ∈ I.

Exercise 4.8.29. Let A be a commutative Banach algebra with approximate
identity of norm bound one. Embed A isometrically into M(A) by x → Lx,
where Lx(y) = xy, x, y ∈ A, and let r denote the spectral radius on M(A).
Let | · | be a uniform norm on A and define | · |r on M(A) by

|T |r = sup{|T (x)| : x ∈ A, r(x) ≤ 1}.

(i) Show that |T |r < ∞ and |T (x)| ≤ |T |rr(x) for all T ∈ M(A) and
x ∈ A.

(ii) Let a ∈ A with r(a) ≤ 1 and ε > 0. Deduce from Cohen’s factorization
theorem (see [19] or [55]) that a can be written as a product a = bc where
r(b) ≤ 1 and r(c) ≤ r(a) + ε. Use this to prove that | · |r is submultiplicative
and hence an algebra norm on M(A).

(iii) Use the square property of | · | to show that |T 2|r = |T |2r for all
T ∈ M(A).

(iv) Suppose that M(A) has the unique uniform norm property. Prove
that |x| = |Lx|r = r(x) for all x ∈ A. Thus A has the unique uniform norm
property.
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Exercise 4.8.30. Let A be a unital commutative Banach algebra and let
B be a unital commutative extension of A. Prove that the following three
conditions are equivalent.

(i) Every ϕ ∈ Δ(A) extends to some element of Δ(B).
(ii) For any finitely many a1, . . . , an ∈ A,

σA(a1, . . . , an) ⊆ σB(a1, . . . , an).

(iii) Every maximal ideal of A is contained in some maximal ideal of B.

Exercise 4.8.31. Let A be a semisimple commutative Banach algebra. Prove
that A is weakly regular if and only if Ae, the unitisation of A, is weakly
regular.

Exercise 4.8.32. Let A and B be semisimple commutative Banach algebras
and let φ : A → B be an injective homomorphism with dense range. Show
that B is weakly regular whenever A is weakly regular.
(Hint: compare the proof of Lemma 4.2.16.)

Exercise 4.8.33. Let A be a commutative Banach algebra and I a closed
ideal of A.

(i) Show that if A is weakly regular, then so is I.
(ii) Give an example showing that A/I need not be weakly regular when-

ever A is weakly regular.

Exercise 4.8.34. If A is a regular commutative Banach algebra, then ∂(A) =
Δ(A). Conclude from results in Sections 4.5 and 4.6 that the converse state-
ment is not true.

Exercise 4.8.35. Let A be a semisimple commutative Banach algebra with
bounded approximate identity and identify A with the closed ideal {Lx : x ∈
A} of M(A). Suppose that A is weakly regular and let | · | be a uniform norm
on M(A).

(i) Let E be a closed subset of Δ(M(A)) such that

|T | = sup{|ϕ(T )| : ϕ ∈ E}

for all T ∈ M(A) (Lemma 4.6.2). Prove that E ⊇ Δ(A).
(ii) Define a seminorm | · |∞ on M(A) by

|T |∞ = sup{|̂T (ϕ)| : ϕ ∈ Δ(A)}, T ∈ M(A).

Conclude from (i) that |T |∞ ≤ |T | for all T ∈ M(A).
(iii) Suppose that Δ(A) is a set of uniqueness for M(A). Then | · |∞ is the

smallest uniform norm on M(A).

Exercise 4.8.36. Consider the following weights on Z and decide for which
of them l1(Z, ω) is regular.

(a) ω(n) = e−n for n ≥ 0 and ω(n) = 1 for n ≤ 0.
(b) ω(n) = e−n2

for n ≥ 0 and ω(n) = 1 for n ≤ 0.
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Exercise 4.8.37. Let α > 0 and let ω be the weight on R defined by ω(t) =
(1 + |t|)α. Show that ω is nonquasianalytic.

Exercise 4.8.38. Let ω be a weight on the integer group Z and let R− and R+

be as in Proposition 2.8.8. Show that l1(Z, ω) is regular whenever R− = R+.
For the converse statement compare Example 4.7.1.

Exercise 4.8.39. Let ω be a weight on Z+. Show that l1(Z+, ω) does not
have the unique uniform norm property.
(Hint: Let R = inf{ω(n)1/n : n ∈ N}. If R > 0, then l1(Z+, ω) is isomorphic
to a subalgebra of A({z ∈ C : |z| ≤ R}), whereas if R = 0, then l1(Z+, ω) is
not semisimple.)

Exercise 4.8.40. Prove that L1(R+, ω) does not have the unique uniform
norm property for any weight ω on R+.

Exercise 4.8.41. A weight function ω on a locally compact Abelian group G
is said to be weakly subadditive if there exists a constant C ≥ 1 such that

ω(xy) ≤ C(ω(x) + ω(y))

for all x, y ∈ G.
(i) For such a weight ω, show by induction on k ∈ N that

ω(x1 · . . . · xn) ≤ Ck(ω(x1) + . . . + ω(xn))

for all n ∈ N such that 2k−1 < n ≤ 2k and all x1, . . . , xn ∈ G.
(ii) Deduce from (i) that ω(xn) ≤ D · ln n for some constant D > 0 and

all x ∈ G and n ∈ N. Conclude that ω is nonquasianalytic.
(iii) For α ≥ 0, let ωα denote the weight on Rn defined by

ωα(x) = (1 + ‖x‖)α, x ∈ R
n.

Show that ωα is weakly subadditive with C = 1 if α ≤ 1 and C = 2α otherwise.

A commutative Banach algebra A is said to be boundedly regular if it has
the following property. There exists a constant C > 0 such that for each closed
subset E of Δ(A) and any ϕ ∈ Δ(A) \ E, there is an a ∈ A with ‖a‖ ≤ C,
â(ϕ) = 1 and â = 0 on E.

Exercise 4.8.42. Let A be a boundedly regular commutative Banach algebra
and I a closed ideal of A.

(i) Show that A/I is boundedly regular.
(ii) If A/I is semisimple, then I is boundedly regular.

Exercise 4.8.43. Prove that the projective tensor product A ̂⊗πB of two
boundedly regular commutative Banach algebras A and B is boundedly
regular.
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4.9 Notes and references

The hull-kernel topology on the maximal ideal space of a commutative Banach
algebra was introduced by Gelfand and Shilov [42]. In a more general, purely
algebraic setting it is due to Jacobson [60] and is therefore often called the
Jacobson topology. Proposition 4.1.7 and Example 4.1.8, which shows that
the map Δ(A) × Δ(B) → Δ(A ̂⊗πB) need not be continuous for the hull-
kernel topologies, can be found in [37]. The notion of regularity and many
of the basic results, such as Theorem 4.2.3 and hereditary properties such
as Theorem 4.2.6, Corollary 4.2.13, and Lemma 4.2.16, go back to Shilov
[122]. Nowadays, they are all standard and can be found in several textbooks.
The same is true of the existence of partitions of unity (Corollary 4.2.12)
and normality (Corollary 4.2.9) of regular Banach algebras. The converse to
Theorem 4.2.6, namely that regularity of a closed ideal I and of A/I together
imply regularity of A (Theorem 4.3.8), was shown by Morschel [91] in his
diploma thesis. Independently, Tomiyama [128] and Gelbaum [37] show that
the projective tensor product A ̂⊗πB is regular if and only if both A and B
are regular (Theorem 4.2.21).

The existence of a greatest regular subalgebra of a semisimple commuta-
tive Banach algebra was discovered by Albrecht [1] as an application of the
theory of decomposable operators. More elementary proofs were later given
by Inoue and Takahasi [58] and Neumann [97], at the same time removing
the assumption of semisimplicity. The proof presented here follows [58]. Ac-
tually, the concept of regularity and the hull-kernel topology are intimately
related to the theory of decomposable multipliers. Concerning this aspect,
we refer the interested reader to the monograph by Laursen and Neumann
[76]. In [69], Kantrowitz and Neumann have determined the greatest regu-
lar subalgebra of several Banach algebras of vector-valued functions, such als
C0(X, A), L1(G, A), and Cn([0, 1], A). In general, it appears to be very diffi-
cult to determine the greatest regular subalgebra of a commutative Banach
algebra. For instance, it is unknown whether reg(A ̂⊗πB) may strictly contain
the projective tensor product of reg(A) and reg(B).

Let G be a locally compact Abelian group. Regularity of L1(G) is one
of the most fundamental results in commutative harmonic analysis and the
basis of all deeper investigations in the ideal theory of L1(G) (see Chapter 5).
All known proofs of regularity use another fundamental theorem in harmonic
analysis, the Plancherel theorem. The most common proof of the Plancherel
theorem, in turn, is based on the Pontryagin duality theorem for locally com-
pact Abelian groups which, conversely, can be derived from the Plancherel
theorem (see Appendix A.5). We have chosen a more direct, although techni-
cal, approach to the Plancherel theorem which goes back to Williamson [139]
and utilizes the Gelfand theory of commutative C∗-algebras and therefore
meets the intention of the book. It is worth pointing out that the greatest
regular subalgebra of M(G), the measure algebra of G, is not known.
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We remind the reader that Shilov introduced the boundary carrying his
name to decide which elements of Δ(A) extend to multiplicative linear func-
tionals of every commutative Banach algebra B into which A is embedded al-
gebraically, but not necessarily continuously. Theorem 4.2.17, which is due to
Rickart [107], says that this is true for all ϕ ∈ Δ(A) whenever A is semisimple
and regular. This multiplicative Hahn–Banach property and the two further
and weaker spectral extension properties, treated in Section 4.5, were investi-
gated and characterised in a satisfactory manner by Meyer [88]. For example,
the condition that rB(x) = rA(x) for all x ∈ A and all commutative extensions
B of A turned out to be equivalent to the fact that every ϕ ∈ ∂(A) extends to
an element of Δ(B). Theorems 4.5.3, 4.5.6, and 4.5.9 are all contained in [88],
and so are Examples 4.5.8 and 4.5.9. These examples together with Example
4.5.10, which has been given in [124], show that among the four properties,
regularity and the three spectral extension properties, no two are equivalent.

The related and slightly weaker unique uniform norm property was intro-
duced and extensively studied in a number of papers by Bhatt and Deda-
nia. The collection of results presented in Section 4.6 is taken from [14] and
[15]. The somewhat unexpected result that for Beurling algebras L1(G, ω)
the unique uniform norm property is equivalent to regularity (Theorem 4.7.3)
was also shown by Bhatt and Dedania [17]. The remarkable and deep The-
orem 4.7.11 stating that L1(G, ω) is regular whenever the weight ω is non-
quasianalytic is due to Domar [26]. Our exposition of Theorem 4.7.11 follows
the one in [83]. Unfortunately, no proof seems to be known which avoids the
use of the structure theory of locally compact Abelian groups. As a matter
of fact, Domar established the even stronger result that L1(G, ω) is regular
precisely when ω is nonquasianalytic, and that in this case, L1(G, ω) is also
Tauberian.
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Spectral Synthesis and Ideal Theory

This final chapter is devoted to ideal theory in commutative Banach algebras
with focus on spectral synthesis problems. The proper setting is that of a
regular and semisimple commutative Banach algebra A, so that the Gelfand
homomorphism A → C0(Δ(A)) is injective and the Gelfand topology on Δ(A)
coincides with the hull-kernel topology.

Recall from Chapter 4 that associated to any closed subset E of Δ(A) is
the closed ideal

k(E) = {a ∈ A : â(ϕ) = 0 for all ϕ ∈ E}

of A and that the hull of a closed ideal I of A is the closed subset

h(I) = {ϕ ∈ Δ(A) : ϕ(I) = {0}}

of Δ(A). Then h(k(E)) = E, and hence the map I → h(I) from the collection
of all closed ideals in A onto the collection of all closed subsets of Δ(A) is
surjective. The spectral synthesis problem is the question of when the assign-
ment I → h(I) is injective (in this case, one says that spectral synthesis holds
for A) or, more generally, for which closed subsets E of Δ(A), k(E) is the only
closed ideal in A with hull equal to E. All sections of this chapter, except for
5.3 and 5.6, solely concentrate on spectral synthesis problems.

In Section 5.1 we introduce the relevant notions, such as sets of synthesis
and Ditkin sets, and develop a key tool, the local membership principle. The
genuine interest in producing sets of synthesis and Ditkin sets leads to ques-
tions such as how these classes of subsets of Δ(A) behave under the formation
of unions and embedding of Δ(A/I) into Δ(A) for a closed ideal I of A. These
and similar problems are extensively discussed in Section 5.2.

Spectral synthesis fails for the algebra Cn[0, 1] of n-times continuously
differentiable functions on the interval [0, 1]. In fact, associated to each point
t ∈ [0, 1] = Δ(Cn[0, 1]) is a chain of n+1 distinct ideals with hull the singleton
{t}. Nevertheless, as we show in Section 5.3, every proper closed ideal in
Cn[0, 1] is the intersection of such so-called primary ideals. Spectral synthesis
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need not even hold for A when Δ(A) is discrete. An example is provided by the
Mirkil algebra, which also serves as a counterexample to the union conjecture
in that its structure space contains two disjoint sets of synthesis, the union of
which fails to be of synthesis (Section 5.4).

A famous theorem of Malliavin, which is beyond the scope of this book,
states that spectral synthesis fails for the group algebra L1(G) of a locally
compact Abelian group G whenever G is noncompact (equivalently, Δ(L1(G))
is nondiscrete). Therefore, in Section 5.5 we utilize the results of Sections 5.2
and 4.4 to study sets of synthesis and Ditkin sets for L1(G) in detail. Moreover,
there is a complete description, which we present in Section 5.6, of the closed
ideals in L1(G) with bounded approximate identities. The hulls of these ideals
turn out to be precisely the closed sets in the coset ring of the dual group ̂G
of G, and in particular they are Ditkin sets.

Finally, the last section is designated to examine the projective tensor
product of two commutative Banach algebras in the context of spectral syn-
thesis.

5.1 Basic notions and local membership

Let A be a regular commutative Banach algebra. We already know that a
closed subset E of Δ(A) is completely determined by its kernel k(E) since
E = h(k(E)) (Theorem 4.2.3). The following kind of dual question is a very
interesting and extremely difficult one. To what extent is a closed ideal I
of A determined by its hull h(I)? It is not generally true that I = k(h(I)).
Therefore the question should be rephrased as follows. Given a closed subset
E of Δ(A), what are the different closed ideals of A whose hulls equal E?
More specifically, one might ask which closed subsets E of Δ(A) are the hull
of only one closed ideal of A, namely k(E). This is the basic problem of spectral
synthesis.

To start with, let us consider a commutative C∗-algebra A. Then the
Gelfand homomorphism is an isometric isomorphism from A onto C0(Δ(A))
(Theorem 2.4.5). Now, for any locally compact Hausdorff space X , we have
earlier described all the closed ideals of C0(X). In fact, by Theorem 1.4.6,
there is a bijection between closed subsets of X and closed ideals of C0(X)
given by

Y → I(Y ) = {f ∈ C0(X) : f(x) = 0 for all x ∈ Y }.

Thus the assignment E → k(E) = {a ∈ A : â|E = 0} is a bijection between
the collection of closed subsets of Δ(A) and closed ideals of A. In particular,
spectral synthesis holds for any commutative C∗-algebra. Moreover, applying
Urysohn’s lemma we have seen in the proof of Theorem 1.4.6 that given E,
a ∈ k(E), and ε > 0, there exists a continuous function f on Δ(A) such that
‖f‖∞ = 1, f(ϕ) = 1 for all ϕ in the compact set {ψ ∈ Δ(A) : |ψ(a)| ≥ ε} and
f has compact support disjoint from E. Now, let u ∈ A so that û = f . Then
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‖ua − a‖ = ‖(û − 1)â‖∞ ≤ ε. In the terminology which is introduced soon,
this means that every closed subset of Δ(A) is a Ditkin set.

Throughout this entire section A denotes a commutative Banach algebra.
However, all the relevant results require the additional hypotheses that A be
semisimple and regular. In studying the ideal theory of A, a certain local mem-
bership principle (Theorem 5.1.2) turns out to be very useful. This principle
is based on the following notion.

Definition 5.1.1. Let M be a subset of A and f a complex-valued function
on Δ(A). Then we say that f belongs locally to M at a point ϕ of Δ(A) if there
exist x ∈ M and a neighbourhood V of ϕ in Δ(A) such that x̂(ψ) = f(ψ) for
all ψ ∈ V . Similarly, f belongs locally to M at infinity if there exist y ∈ M
and a compact subset C of Δ(A) such that ŷ(ψ) = f(ψ) for all ψ ∈ Δ(A) \C.
Finally, we say that f belongs locally to M provided that f belongs locally to
M at every ϕ ∈ Δ(A) and at infinity.

Theorem 5.1.2. Let A be regular and let I be an ideal of A and suppose that
f is a function on Δ(A) that belongs locally to I. Then there exists x ∈ I such
that x̂ = f . In particular, if A is semisimple and y ∈ A is such that ŷ belongs
locally to I, then y ∈ I.

Proof. Because f belongs locally to I at infinity, there exist a compact subset
C of Δ(A) and an element x0 in I such that x̂0(ψ) = f(ψ) for all ψ ∈ Δ(A) \
C. Since f belongs locally to I at every point of C, there are open subsets
U1, . . . , Un of Δ(A) and elements x1, . . . , xn of I such that C ⊆

⋃n
j=1 Uj and

x̂j(ϕ) = f(ϕ) for all ϕ ∈ Uj , 1 ≤ j ≤ n. Because A is regular, by Corollary
4.2.12 we can find elements u1, . . . , un ∈ A such that

(

û1 + · · · + ûn

)

|C = 1 and supp ûj ⊆ Uj ,

1 ≤ j ≤ n. Let u =
∑n

j=1 uj and

x = x0 − x0u +
n
∑

j=1

ujxj ∈ I.

Now note that ûj(ϕ) = 0 for all j whenever ϕ �∈
⋃n

k=1 Uk. On the other hand,
if ϕ ∈

⋃n
k=1 Uk and J denotes the set of all indices j ∈ {1, . . . , n} such that

ϕ ∈ Uj , then

n
∑

j=1

ûj(ϕ)x̂j(ϕ) =
∑

j∈J

ûj(ϕ)x̂j(ϕ) = f(ϕ)
∑

j∈J

ûj(ϕ) = f(ϕ)
n
∑

j=1

ûj(ϕ)

= f(ϕ)û(ϕ).

Since û(ϕ) = 1 for ϕ ∈ C and x̂0(ϕ) = f(ϕ) for ϕ �∈ C, we obtain that, for all
ϕ ∈ Δ(A),
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x̂(ϕ) = x̂0(ϕ)(1 − û(ϕ)) +
n
∑

j=1

ûj(ϕ)x̂j(ϕ)

= x̂0(ϕ)(1 − û(ϕ)) + f(ϕ)û(ϕ)
= f(ϕ).

This proves the first statement of the theorem. As to the second, we only have
to observe that, by the first part, ŷ = x̂ for some x ∈ I. By semisimplicity,
this implies y = x ∈ I. �	

In the sequel, for x ∈ A we simply write h(x) in place of h({x}).

Lemma 5.1.3. Let A be regular, I an ideal of A, and x ∈ A. Then x̂ belongs
locally to I at each point of h(x)0, the interior of h(x), and at each point of
Δ(A) \ h(I).

Proof. Because x̂(ϕ) = 0 for all ϕ ∈ h(x), the first assertion is clear. If ϕ �∈
h(I), then by Lemma 4.1.9 there exists y ∈ I such that ŷ = 1 in some
neighbourhood V of ϕ. It follows that yx ∈ I and

ŷx(ψ) = ŷ(ψ)x̂(ψ) = x̂(ψ)

for all ψ ∈ V , whence x̂ belongs locally to I at ϕ. �	

Corollary 5.1.4. Suppose that A is semisimple and regular. Let x ∈ A be
such that x̂ has compact support and h(I) ∩ supp x̂ = ∅. Then x ∈ I.

Proof. Since x̂ has compact support, x̂ belongs locally to I at infinity. By
Lemma 5.1.3, x̂ belongs locally to I at every ϕ ∈ Δ(A) \ h(I) and also at
every ϕ ∈ h(I) since, by hypothesis,

h(I) ⊆ Δ(A) \ supp x̂ = h(x)0.

Theorem 5.1.2 shows that x ∈ I. �	

After these preparations we are able to show that given a closed subset E
of Δ(A), there exists a smallest ideal of A with hull equal to E.

Definition 5.1.5. For any closed subset E of Δ(A), define an ideal j(E) of
A by

j(E) = {x ∈ A : x̂ has compact support and supp x̂ ∩ E = ∅}.

If E is a singleton {ϕ}, we simply write j(ϕ) instead of j({ϕ}).

Theorem 5.1.6. Suppose that A is semisimple and regular and let I be an
ideal of A and E a closed subset of Δ(A). Then h(I) = E if and only if

j(E) ⊆ I ⊆ k(E).

In particular, j(E) in the smallest closed ideal of A with hull equal to E.
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Proof. Suppose first that j(E) ⊆ I ⊆ k(E). Then, since A is regular,

E = h(k(E)) ⊆ h(I) ⊆ h(j(E)).

To show that actually h(I) = E, it therefore suffices to verify that h(j(E)) ⊆
E. To that end, let ϕ ∈ Δ(A) \ E and choose a relatively compact open
neighbourhood U of ϕ such that U ∩E = ∅. Because A is regular, there exists
x ∈ A such that

x̂(ϕ) = 1 and x̂|Δ(A)\U = 0.

Thus x̂ has compact support and vanishes on the open neighbourhood Δ(A)\
U of E. So x ∈ j(E), whereas ϕ(x) �= 0. This shows ϕ �∈ h(j(E)), as required.

Conversely, suppose that h(I) = E. Then I ⊆ k(h(I)) = k(E), and if
x ∈ j(E), then x̂ has compact support and h(I)∩ supp x̂ = ∅, and this implies
x ∈ I by Corollary 5.1.4.

Finally, this also shows that h(j(E)) = h(j(E)) = E and j(E) ⊆ I for
every closed ideal I of A with h(I) = E. �	

We now introduce some further notions that are fundamental to the study
of ideal theory in commutative Banach algebras.

Definition 5.1.7. Let A be a commutative Banach algebra and E a closed
subset of Δ(A).

(i) E is called a spectral set or set of synthesis (some authors also use the term
Wiener set) if k(E) is the only closed ideal of A with hull equal to E. We
say that spectral synthesis holds for A or A admits spectral synthesis if
every closed subset of Δ(A) is a set of synthesis.

(ii) E is called a Ditkin set or Wiener–Ditkin set for A if given x ∈ k(E),
there exists a sequence (yk)k in j(E) such that ykx → x as k → ∞.

(iii) A is called Tauberian if the set of all x ∈ A such that x̂ has compact
support is dense in A.

Remark 5.1.8. (1) Suppose that A is semisimple and regular. Then Theorem
5.1.6 shows that a closed subset E of Δ(A) is a set of synthesis if and only if
k(E) = j(E), and E is a Ditkin set if and only if E is a set of synthesis and
x ∈ xk(E) for every x ∈ k(E). Furthermore, A is Tauberian precisely when ∅
is a set of synthesis.

(2) The fact that a singleton {ϕ} is a Ditkin set for A is often rephrased
by saying that A satisfies Ditkin’s condition at ϕ. Similarly, one says that A
satisfies Ditkin’s condition at infinity if ∅ is a Ditkin set. Moreover, A is said
to satisfy Ditkin’s condition if it satisfies Ditkin’s condition at every ϕ ∈ Δ(A)
and at infinity.

We have already observed that every proper modular ideal of a Banach
algebra is contained in some maximal modular ideal (Lemma 1.4.2). It need
not generally be the case that every proper closed ideal of a commutative
Banach algebra is contained in some maximal modular ideal. However, we
have the following
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Lemma 5.1.9. Let A be a regular and semisimple commutative Banach alge-
bra and suppose that A is Tauberian. Then h(I) �= ∅ for every proper closed
ideal of A. In particular, if a ∈ A is such that â(ϕ) �= 0 for all ϕ ∈ Δ(A),
then the ideal Aa is dense in A.

Proof. If I is a proper closed ideal with h(I) = ∅, then j(∅) ⊆ I by Theorem
5.1.6. However, j(E) is dense in A since A is Tauberian.

The second statement is now obvious. �	

In passing we insert a characterisation of sets of synthesis in terms of the
dual space A∗ of A (Proposition 5.1.13).

Definition 5.1.10. Let V be an open subset of Δ(A) and let f ∈ A∗. Then
f is said to vanish on V if f(x) = 0 for all x ∈ A for which supp x̂ is compact
and contained in V .

Lemma 5.1.11. Let A be a semisimple and regular commutative Banach al-
gebra. Given f ∈ A∗, there exists a largest open subset of Δ(A) on which f
vanishes.

Proof. We first show that if f vanishes on finitely many open subsets V1, . . . , Vn

of Δ(A), then f vanishes on
⋃n

j=1 Vj . To that end, let x ∈ A be such that
supp x̂ is compact and contained in

⋃n
j=1 Vj . Since A is regular, by Corol-

lary 4.2.12 there exist u1, . . . , un ∈ A so that supp ûj ⊆ Vj , 1 ≤ j ≤ n,
and

∑n
j=1 ûj = 1 on supp x̂. Because A is semisimple, it follows that

x =
∑n

j=1 xuj , and since supp x̂uj ⊆ Vj for 1 ≤ j ≤ n, we conclude that

f(x) =
n
∑

j=1

f(xuj) = 0,

because f vanishes on each Vj .
Now, let V be the collection of all open subsets of Δ(A) on which f vanishes

and let U =
⋃

{V : V ∈ V}. Then f vanishes on U . Indeed, if x ∈ A is such
that supp x̂ is compact and contained in U , then there exist V1, . . . , Vn ∈ V
with supp x̂ ⊆

⋃n
j=1 Vj , and hence f(x) = 0 by the first part of the proof.

Thus f vanishes on U and, by definition, U is the largest open subset of Δ(A)
on which f vanishes. �	

Definition 5.1.12. Let f ∈ A∗ and let U be the largest open subset of Δ(A)
on which f vanishes (Lemma 5.1.11). The closed set Δ(A) \ U is called the
support of f and denoted supp f .

Now the characterisation of spectral sets in terms of A∗, announced above,
is as follows.

Proposition 5.1.13. Let E be a closed subset of Δ(A). Then E is a spectral
set if and only if whenever f ∈ A∗ is such that supp f ⊆ E, then f(x) = 0 for
all x ∈ k(E).
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Proof. Suppose first that E is a set of synthesis and let f ∈ A∗ such that
supp f ⊆ E. Then f vanishes on Δ(A)\E and hence f(x) = 0 for all x ∈ j(E).
Thus f(x) = 0 for all x ∈ j(E) = k(E).

Conversely, if j(E) �= k(E), then by the Hahn–Banach theorem there
exists f ∈ A∗ such that f(x) = 0 for all x ∈ j(E), whereas f(y) �= 0 for some
y ∈ k(E). Then f vanishes on Δ(A) \ E and hence supp f ⊆ E. This finishes
the proof. �	

When proceeding to study the local membership principle, it is convenient
to introduce the following notation. For a ∈ A and M ⊆ A, let Δ(a, M) denote
the closed subset of Δ(A) consisting of all ϕ ∈ Δ(A) such that â does not
belong locally to M at ϕ.

Lemma 5.1.14. Let A be semisimple and regular and let I be a closed ideal
of A. Let x ∈ A and let ϕ be an isolated point of Δ(x, I). In addition, suppose
that j(ϕ) possesses an approximate identity. Then x̂ does not belong locally to
j(ϕ) at ϕ.

Proof. Towards a contradiction, assume that x̂ belongs locally to j(ϕ) at ϕ,
and let U be a neighbourhood of ϕ and y ∈ j(ϕ) such that x̂ = ŷ on U .
Then, because ϕ is an isolated point of Δ(x, I), it is an isolated point of
Δ(y, I) and we can choose an open neighbourhood V of ϕ such that V ⊆ U
and V ∩ Δ(y, I) = {ϕ}. By Corollary 4.2.9, there exists z ∈ A such that
ẑ = 1 on some neighbourhood of ϕ and supp ẑ ⊆ V . Finally, since j(ϕ)
has an approximate identity, there exists a sequence (un)n in j(ϕ) such that
‖uny − y‖ → 0 as n → ∞.

Now consider the elements zn = unzy, n ∈ N, of A. Then ẑn belongs
locally to I at infinity and at every ψ ∈ Δ(A)\V since supp ẑ ⊆ V . Moreover,
ẑn belongs locally to I at ϕ since ûn vanishes in some neighbourhood of ϕ, and
also at every ψ ∈ V \ {ϕ} because V ∩Δ(y, I) = ∅. It follows that zn ∈ I and
therefore zy = limn→∞ zn ∈ I. After all, this means that ŷ belongs locally to
I at ϕ since ẑ is identically one in some neighbourhood of ϕ. This contradicts
ϕ ∈ Δ(y, I) and finishes the proof. �	

We conclude this section with the following proposition which is applied
in the next section.

Proposition 5.1.15. Let A be a regular and semisimple commutative Banach
algebra. Let I be a closed ideal of A and let x ∈ A be such that h(I) ⊆ h(x).
Then

(i) Δ(x, I) is contained in h(I) ∩ ∂(h(x)) = ∂(h(I)) ∩ ∂(h(x)).
(ii) If singletons in Δ(A) are Ditkin sets, then Δ(x, I) has no isolated points.

Proof. (i) By Lemma 5.1.3, x belongs locally to I at each point of h(x)0 and
at each point of Δ(A) \ h(I). Thus

Δ(x, I) ⊆ h(I) ∩ (Δ(A) \ h(x)0).
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However, since h(I) ⊆ h(x),

∂(h(I)) ∩ ∂(h(x)) =
(

h(I) ∩ Δ(A) \ h(I)
)

∩
(

h(x) ∩ Δ(A) \ h(x)
)

= h(I) ∩ h(x) ∩ Δ(A) \ h(x) = h(I) ∩ ∂(h(x))
= h(I) ∩

(

h(x) ∩ (Δ(A) \ h(x)0)
)

= h(I) ∩ (Δ(A) \ h(x)0).

So Δ(x, I) ⊆ ∂(h(I)) ∩ ∂(h(x)).
(ii) Assume that Δ(x, I) has an isolated point ϕ. Because {ϕ} is a Ditkin

set, it follows from Lemma 5.1.14 that x does not belong locally to j(ϕ) = k(ϕ)
at ϕ. But ϕ ∈ h(I) ⊆ h(x), so that x ∈ k(ϕ). This contradiction shows (ii). �	

5.2 Spectral sets and Ditkin sets

Let A be a commutative Banach algebra. Our objective in this section is the
naturally arising problem of which closed subsets of Δ(A) are sets of synthesis
or Ditkin sets and whether these classes of subsets of Δ(A) are preserved
under certain operations, such as forming finite unions. We begin with the
latter question which allows a satisfactory answer for Ditkin sets, as the next
two results show.

Lemma 5.2.1. The union of two Ditkin sets is a Ditkin set.

Proof. Let E1 and E2 be Ditkin sets in Δ(A) and let E = E1 ∪ E2. We have
to show that given x ∈ k(E) and ε > 0, there exists y ∈ j(E) such that
‖x − xy‖ ≤ ε. Now, since x ∈ k(E1) and E1 is a Ditkin set, there exists
y1 ∈ j(E1) such that ‖x − xy1‖ ≤ ε/2. Similarly, since xy1 ∈ k(E2) and E2 is
a Ditkin set, there exists y2 ∈ j(E2) such that ‖xy1−xy1y2‖ ≤ ε/2. It follows
that y = y1y2 ∈ j(E1) ∩ j(E2) = j(E) and ‖x − xy‖ ≤ ε. �	

Theorem 5.2.2. Let A be a semisimple and regular commutative Banach al-
gebra and suppose that ∅ is a Ditkin set. Then every closed subset of Δ(A)
which is a countable union of Ditkin sets is again a Ditkin set.

Proof. Let (Ei)i be a sequence of Ditkin sets in Δ(A) such that E =
⋃∞

i=1 Ei

is closed. Let x ∈ k(E). Then, since ∅ is a Ditkin set, there is a sequence (un)n

in A such that xun → x and ûn has compact support for each n. It suffices
to show that xun ∈ xunj(E) for every n. We can therefore assume that x̂ has
compact support. Then it will follow from Theorem 5.1.2 that x ∈ xj(E) once
we have verified that x̂ belongs locally to xj(E) at every ϕ ∈ Δ(A).

Fix ϕ ∈ Δ(A) and choose a compact neighbourhood U of ϕ. Since A is
regular, there exists u ∈ A such that û = 1 in a neighbourhood of ϕ and
supp û ⊆ U . We show that xu ∈ xj(E). To that end, let ε > 0 be given. Then,
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since all the Ei are Ditkin sets and x ∈ k(Ei), we can construct by induction
a sequence (yi)i such that yi ∈ j(Ei) for each i, ‖xu − xuy1‖ ≤ ε/2 and

‖xu(y1 · . . . · yi−1) − xu(y1 · . . . · yi−1)yi‖ ≤ 2−iε

for i ≥ 2. For each i, let Vi be an open set containing Ei such that ŷi vanishes
on Vi. Now,

E =
∞
⋃

i=1

Ei ⊆
∞
⋃

i=1

Vi.

Since E∩U is compact, E∩U ⊆
⋃n

i=1 Vi for some n ∈ N. Let y = y1 · . . . ·yn ∈
j(E ∩U). Because û vanishes on Δ(A) \U , it follows that uy ∈ j(E). Finally,
we have

‖xu − xuy‖ ≤ ‖xu − xuy1‖ + ‖xuy1 − xuy1y2‖ + . . .

+ ‖xu(y1 · . . . · yn−1) − xu(y1 · . . . · yn−1)yn‖

≤
∞
∑

i=1

2−iε = ε.

It follows that xu ∈ xj(E) since xuy ∈ xj(E) and ε > 0 was arbitrary. Now,
û = 1 in a neighbourhood of ϕ and hence x belongs locally to xj(E) at ϕ. �	

In contrast to the behaviour of Ditkin sets, the union of two sets of syn-
thesis need not be a set of synthesis, even when the structure space Δ(A) is
discrete. An example is provided by the Mirkil algebra which we explore in
Section 5.4. Theorem 5.2.5 below is close to the strongest available result con-
cerning unions of sets of synthesis. For that, two preparatory lemmas, which
appear to be of interest in their own, are required. We continue to assume
that A is a regular and semisimple commutative Banach algebra.

Lemma 5.2.3. Let E1 and E2 be closed subsets of Δ(A). Let E = E1 ∪ E2

and F = E1∩E2, and suppose that F is a Ditkin set. Let I be any closed ideal
of A with h(I) = E and let

Ik = I + j(Ek), k = 1, 2.

Then I = I1 ∩ I2.

Proof. We only have to show that I1 ∩ I2 ⊆ I. Because I is closed in A it
suffices to prove that given a ∈ I1 ∩ I2 and ε > 0, there exists u ∈ A such that
ua ∈ I and ‖ua − a‖ ≤ ε. Note that

h(Ik) = h(I) ∩ h(j(Ek)) = Ek,

k = 1, 2, whence a ∈ k(E1)∩ k(E2) ⊆ k(F ). As F is a Ditkin set, there exists
u ∈ j(F ) such that ‖ua − a‖ ≤ ε. Clearly, ua belongs locally to I at infinity.
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We show that ua belongs locally to I at every point ϕ ∈ Δ(A). Since A is
semisimple it then follows that ua ∈ I.

Firstly, ua belongs locally to I at every ϕ ∈ Δ(A) \ h(I) (Lemma 5.1.3)
and at each ϕ ∈ Δ(A) \ supp ûa. Thus we are left with points of

(E1 ∩ supp ûa) ∪ (E2 ∩ supp ûa).

Put C = E1 ∩ supp ûa, which is a compact set. Then C ∩ E2 = ∅ because û
vanishes in a neighbourhood of F = E1∩E2. Choose a compact neighbourhood
V of C such that

∅ = V ∩ E2 = V ∩ h(j(E2)).

We can now apply Theorem 4.2.8, taking the ideal j(E2) and the compact
set V , to deduce the existence of some x ∈ j(E2) such that x̂(ψ) = 1 for all
ψ ∈ V . Now, since ua ∈ I1 = I + j(E1), for every δ > 0 there exist yδ ∈ I
and zδ ∈ j(E1) such that

‖ua − (yδ + zδ)‖ ≤ δ‖x‖−1.

It follows that ‖xua− x(yδ + zδ)‖ ≤ δ as well as

xyδ ∈ I and xzδ ∈ j(E1) ∩ j(E2) = j(E) ⊆ I.

Since I is closed and δ > 0 was arbitrary, we conclude that xua ∈ I. Finally,
since x̂ is identically one on V , it follows that ua belongs locally to I at every
point of C.

In exactly the same way it is shown that ua belongs locally to I at every
point of E2 ∩ supp ûa. �	

The following lemma shows that, as closed ideals, I1 and I2 in the preceding
lemma are uniquely determined by the conditions that I1∩I2 = I and h(Ik) =
Ek for k = 1, 2.

Lemma 5.2.4. Let E1, E2, and I be as in Lemma 5.2.3. If J1 and J2 are
closed ideals of A with h(Jk) = Ek, k = 1, 2, and J1 ∩ J2 = I, then

Jk = I + j(Ek), k = 1, 2.

Proof. As in Lemma 5.2.3, let Ii = I + j(Ei) for i = 1, 2. We prove that
J1 ⊆ I1, the converse inclusion, I1 ⊆ J1, being obvious since I ⊆ J1 and
j(E1) is the smallest ideal with hull equal to E1. Thus, let a ∈ J1. It is
enough to show that given ε > 0, there exists u ∈ A such that ua ∈ I1 and
‖ua − a‖ ≤ ε.

Since F = E1 ∩ E2 is a Ditkin set and a ∈ k(F ), there exists u ∈ j(F )
such that ‖ua − a‖ ≤ ε. Let C = E1 ∩ supp ûa and choose v ∈ j(E2) such
that v̂ = 1 on some neighbourhood of C (compare the proof of Lemma 5.2.3).
Then ua − vua ∈ I1. In fact, ̂ua − vua belongs locally to I1 at infinity since
û has compact support, and clearly at every ϕ ∈ Δ(A) \ h(I) as well as
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at each ϕ ∈ Δ(A) \ supp ûa, and finally also at ϕ ∈ C since v̂ = 1 in some
neighbourhood of C. By semisimplicity, we get ua−vua ∈ I1, and this together
with

vua ∈ J1 ∩ j(E2) ⊆ J1 ∩ J2 = I ⊆ I1

yields that ua1 ∈ I1, as required. So J1 = I1, and similarly J2 = I2. �	

Using the preceding two lemmas, we can now quickly prove the result on
unions of spectral sets alluded to above.

Theorem 5.2.5. Let A be a semisimple and regular commutative Banach al-
gebra. Suppose that E1 and E2 are closed subsets of Δ(A) such that E1 ∩ E2

is a Ditkin set. Then E1 ∪ E2 is a spectral set if and only if both E1 and E2

are spectral sets. In particular, if A satisfies Ditkin’s condition at infinity and
E1 and E2 are disjoint, then E1 ∪ E2 is a spectral set if and only if E1 and
E2 are spectral sets.

Proof. First, let E1 and E2 be spectral sets. Let E = E1 ∪ E2 and apply
Lemma 5.2.3 with I = j(E). It follows that

j(E) = I + j(E1) ∩ I + j(E2)
= I + k(E1) ∩ I + k(E2) = k(E1) ∩ k(E2)
= k(E).

Thus E is a spectral set.
Conversely, suppose that E is a spectral set and again let I = j(E). Then

I = k(E) = k(E1) ∩ k(E2) and I ⊆ j(Ei) for i = 1, 2. Taking Ji = k(Ei) in
Lemma 5.2.4, we see that

k(Ei) = I + j(Ei) = j(Ei),

so that Ei is a spectral set for i = 1, 2. �	

The notions of set of synthesis and of Ditkin set are local in the sense of
the following theorem. Part (i) of this theorem in particular also shows that,
for A as in the theorem, the union of two disjoint sets of synthesis is a set of
synthesis (compare this with Theorem 5.2.5).

Theorem 5.2.6. Let A be a regular and semisimple commutative Banach al-
gebra satisfying Ditkin’s condition at infinity and let E be a closed subset of
Δ(A).

(i) Suppose that each point of E has a closed relative neighbourhood in E
which is a set of synthesis for A. Then E is a set of synthesis for A.

(ii) Suppose that each point of E has a closed relative neighbourhood in E
which is a Ditkin set for A. Then E is a Ditkin set for A.
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Proof. (i) We have to show that every x ∈ k(E) belongs to j(E). Because ∅ is
a Ditkin set, we can assume that x̂ has compact support. By Theorem 5.1.2
and Lemma 5.1.3 it then suffices to show that x̂ belongs locally to j(E) at
every ϕ ∈ E.

By hypothesis, there exist a closed subset Eϕ of E and an open neighbour-
hood Uϕ of ϕ in Δ(A) such that Eϕ is a set of synthesis and Uϕ ∩ E ⊆ Eϕ.
A being regular, there exists u ∈ A such that supp û ⊆ Uϕ and û = 1 in a
neighbourhood of ϕ in Δ(A). Since Eϕ is a set of synthesis, given any ε > 0,
there exists y ∈ j(Eϕ) with ‖y − x‖ ≤ ε/‖u‖. Then ‖yu − xu‖ ≤ ε and ŷu
vanishes in a neighbourhood of E since ŷ = 0 in a neighbourhood on Eϕ,
û = 0 is a neighbourhood of Δ(A) \ Uϕ, and E ⊆ Eϕ ∪ (Δ(A) \ Uϕ). So
yu ∈ j(E) and hence xu ∈ j(E) since ε > 0 was arbitrary. Finally, x̂u = x̂ in
a neighbourhood of ϕ and hence x̂ belongs locally to j(E) at ϕ.

(ii) Let x ∈ k(E) and ε > 0 be given. Because ∅ is a Ditkin set, there
exists u0 ∈ A such that û0 has compact support and ‖u0x − x‖ ≤ ε/2. Since
E ∩ supp û0 is compact, there exist closed subsets E1, . . . , En of E such that
E∩supp û0 ⊆

⋃n
j=1 Ej and each Ej is a Ditkin set. We now define inductively

a sequence (uk)k in A such that uk ∈ j(Ek) and

‖uk(uk−1 · . . . · u0)x − (uk−1 · . . . · u0)x‖ ≤ ε/2n.

Let u = un · . . . · u0 ∈ A. Then

‖ux − x‖ ≤
n
∑

k=1

‖uk(uk−1 · . . . · u0)x − (uk−1 · . . . · u0)x‖ + ‖u0x − x‖ ≤ ε.

Moreover, û has compact support disjoint from E. In fact, uk ∈ j(Ek) for
1 ≤ k ≤ n and E ∩ supp û0 ⊆

⋃n
j=1 Ej . This shows that E is a Ditkin set. �	

Let I be a closed ideal of A and let q : A → A/I denote the quo-
tient homomorphism. Then the mapping i : Δ(A/I) → Δ(A), defined by
i(ϕ)(x) = ϕ(q(x)) for ϕ ∈ Δ(A/I) and x ∈ A, is a homeomorphism between
Δ(A/I) and the subset h(I) of Δ(A) (Lemma 4.1.5). It is a challenging issue
whether i maintains synthesis properties. As we show in Section 5.5, there
is a complete solution to this when A = L1(G) and I is the kernel of the
canonical homomorphism L1(G) → L1(G/H), where G is a locally compact
Abelian group and H is a closed subgroup of G. The following theorem, which
might well be termed the injection theorem for spectral sets and Ditkin sets,
comprises what is known in this respect for general commutative Banach al-
gebras.

Theorem 5.2.7. Let A be a regular and semisimple commutative Banach al-
gebra, I a closed ideal of A, and E a closed subset of Δ(A/I).

(i) If i(E) is a spectral set (respectively, Ditkin set) for A, then E is a spectral
set (respectively, Ditkin set) for A/I.
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(ii) Suppose that h(I) is a spectral set for A. If E is a spectral set for A/I,
then i(E) is a spectral set for A.

(iii) Suppose that A satisfies Ditkin’s condition at infinity and that there exists
a constant c > 0 such that for any a ∈ A and ε > 0, there exists b ∈ A
such that ‖a − ba‖ ≤ c‖q(a)‖ + ε and ̂b vanishes in a neighbourhood of
h(I). If E is a Ditkin set for A/I, then i(E) is a Ditkin set for A.

Proof. (i) Suppose that i(E) is a spectral set (respectively, Ditkin set) for A
and let x ∈ A be such that q(x) ∈ k(E). Then, given ε > 0, there exists
y ∈ j(i(E)) such that ‖x − y‖ < ε (respectively, ‖x − xy‖ < ε). Thus

‖q(x) − q(y)‖ < ε (respectively, ‖q(x) − q(x)q(y)‖ < ε).

Also supp ̂q(y) ⊆ i−1(supp ŷ), and if ŷ vanishes on the open neighbourhood V

of i(E) in Δ(A), then ̂q(y) vanishes on the open neighbourhood i−1(V ) of E
in Δ(A/I). This shows that E is a spectral set (respectively, Ditkin set) for
A/I.

(ii) We claim that there is a bijective correspondence between the closed
ideals J of A with h(J) = i(E) and the closed ideals K of A/I with h(K) = E.
Given such K, simply take J = q−1(K). Clearly then h(J) = i(E). Conversely,
let J be given. We show that I ⊆ J . To that end, let x ∈ I and ε > 0 be given.
Because h(I) is a set of synthesis, there exists y ∈ j(h(I)) with ‖x − y‖ < ε.
Thus ŷ has compact support and vanishes in a neighbourhood of h(J) since
h(J) = i(E) ⊆ h(I). Corollary 5.1.4 implies that y ∈ J . As ε > 0 was arbitrary,
we infer that x ∈ J . So J = q−1(J/I). This establishes the above claim. It
follows that k(i(E)) = j(i(E)) since k(E) = j(E).

(iii) Let x ∈ k(i(E)), x �= 0, and ε > 0. Then q(x) ∈ k(E) and hence, since
E is a Ditkin set for A/I, there exists u ∈ A such that ‖q(x)q(u) − q(x)‖ ≤ ε

and ̂q(u) vanishes on a neighbourhood of E in Δ(A/I). By (ii), i(E) is a set
of synthesis for A. Hence, since u ∈ k(i(E)), there exists v ∈ A with the
properties that ‖v − u‖ ≤ ε/‖x‖ and v̂ has compact support and vanishes on
a neighbourhood of i(E) in Δ(A). Then

‖q(x) − q(x)q(v)‖ ≤ ‖q(x) − q(x)q(u)‖ + ‖x‖ · ‖q(u) − q(v)‖ ≤ 2ε.

By hypothesis, there exists w ∈ A such that

‖(x − vx) − w(x − vx)‖ ≤ c‖q(x − vx)‖ + ε

and ŵ vanishes in a neighbourhood of i(Δ(A/I)) = h(I). Since A satisfies
Ditkin’s condition at infinity, we can assume that ŵ has compact support.
Now, let y = v + w − vw. Then

‖x − yx‖ = ‖(x − vx) − w(x − vx)‖
≤ c‖q(x − vx)‖ + ε

≤ ε(2c + 1).
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Finally, ŷ vanishes in a neighbourhood of i(E) in Δ(A) since ŵ vanishes in a
neighbourhood of i(Δ(A/I)) in Δ(A) and v̂ vanishes in a neighbourhood of
i(E) in Δ(A). Thus y ∈ j(i(E)), and since ε > 0 was arbitrary it follows that
x ∈ j(i(E)). �	

It turns out that the hypotheses in part (iii) of Theorem 5.2.7 are fulfilled
in the group algebra situation outlined above.

We continue with a simple lemma which shows that for commutative Ba-
nach algebras, which satisfy a condition similar to being boundedly regular,
a set of synthesis necessarily is a Ditkin set.

Lemma 5.2.8. Let A be a semisimple and regular commutative Banach al-
gebra and let E ⊆ Δ(A) be a set of synthesis. Suppose that there exists a
constant c > 0 such that for every compact subset K of Δ(A) which is dis-
joint from E, there exists y ∈ j(E) such that ‖y‖ ≤ c and ŷ = 1 on K. Then
E is a Ditkin set.

Proof. Let x ∈ k(E) and ε > 0 be given. Since E is a set of synthesis, there
exists u ∈ j(E) such that ‖u − x‖ ≤ ε. By hypothesis, there exists y ∈ j(E)
satisfying ‖y‖ ≤ c and ŷ = 1 on supp û. Then u = uy since û = ûy and A is
semisimple. It follows that

‖x − xy‖ ≤ ‖x − u‖ + ‖uy − xy‖ ≤ (1 + c)‖x − u‖ ≤ (1 + c)ε.

Thus x ∈ xj(E), as was to be shown. �	

Definition 5.2.9. A compact subset E of Δ(A) is said to satisfy condition
(D) (D referring to Ditkin) if there exists a constant C > 0 such that for
every neighbourhood U of E, there is y ∈ A so that ‖y‖ ≤ C, supp ŷ ⊆ U ,
and ŷ = 1 in a neighbourhood of E.

The relevance of condition (D) is due to the fact that for unital A it turns
out to be equivalent to the condition in Lemma 5.2.8, which ensures that a
set of synthesis is already a Ditkin set.

Lemma 5.2.10. Suppose that A has an identity e and let E be a closed subset
of Δ(A). Then the following are equivalent.

(i) E satisfies condition (D).
(ii) There exists a constant c > 0 such that for every compact subset K of

Δ(A) which is disjoint from E, there exists a ∈ j(E) with ‖a‖ ≤ c and
â = 1 on K.

Proof. (ii) ⇒ (i) Let U be an open set containing E. Choose an open set V so
that E ⊆ V and V ⊆ U , and let K = Δ(A) \V . By (ii), there exists a ∈ j(E)
such that â = 1 on K and ‖a‖ ≤ c. Then the element x = e − a satisfies
‖x‖ ≤ 1 + c, supp x̂ ⊆ U , and x̂ = 1 is a neighbourhood of E. So (i) holds.

(i) ⇒ (ii) is even simpler. �	
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We now concentrate on finding conditions on an individual closed subset
E of Δ(A) which ensure that E is a set of synthesis. Employing the local
membership principle it turns out that a certain condition, which is close to
countability of the boundary ∂(E), is sufficient.

Definition 5.2.11. Let X be a topological space. Then X is called scattered
if every nonempty closed subset F of X has an isolated point; that is, there
exist x ∈ F and an open subset U of X such that U ∩ F = {x}.

Remark 5.2.12. Suppose that X is a countable locally compact Hausdorff
space. Then X is scattered. Indeed, if F is any nonempty closed subset of X ,
then F is a countable union of closed singletons and locally compact, so that
by Baire’s theorem at least one of these singletons has to be open in F .

Conversely, if X is a Hausdorff space with a countable basis U for its
topology and if X is scattered, then X has to be countable. This can be seen
as follows. Let

V =
⋃

{U ∈ U : U is countable} and C = X \ V.

Then V is countable and open. Towards a contradiction, assume that C is
nonempty. Then, since X is scattered and C is closed in X , C has an isolated
point x. Hence there exists U ∈ U such that U ∩ C = {x}. From

U = (U ∩ C) ∪ (U ∩ V ) ⊆ {x} ∪ V

we get that U is countable and hence contained in V . So x ∈ V , and this
contradiction shows that X = V , which is countable.

A classical and powerful theorem, which is often referred to as the Wiener–
Ditkin theorem (or Ditkin–Shilov theorem), asserts that if A is a semsisimple
and regular commutative Banach algebra which satisfies Ditkin’s condition at
infinity, then every closed subset of Δ(A) with scattered boundary is a spectral
set. We proceed with the following more general result, which is needed in
Section 5.7 and the proof of which is technically somewhat involved.

Theorem 5.2.13. Let A be a regular and semisimple commutative Banach
algebra. Let T be a locally compact Hausdorff space and φ : Δ(A) → T a
continuous, surjective, and proper mapping. Suppose that for each t ∈ T ,
every closed subset of φ−1(t) is a Ditkin set for A. Let E be a closed subset
of Δ(A) such that φ(∂(E)) is scattered. Then E is a set of synthesis for A.

Proof. Let I be a closed ideal of A with h(I) = E and let x ∈ k(E). We have
to show that x ∈ I. Since ∅ is a Ditkin set, for every ε > 0 there exists y ∈ A
such that ŷ has compact support and ‖x − xy‖ < ε. It then suffices to show
that xy ∈ I for any such y. Therefore we can assume that x̂ has compact
support.

Let S denote the set of all t ∈ T with the property that x does not belong
locally to I at at least one point of φ−1(t). We aim at showing that S = ∅.
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To that end, we first observe that S is closed in T . To see this, let (sα)α be a
net in S converging to some t ∈ T and, towards a contradiction, assume that
t �∈ S. For each α, choose ϕα ∈ φ−1(sα) such that x does not belong locally to
I at ϕα. Fix a compact neighbourhood U of t. Then φ−1(U) is compact since
φ is proper. Therefore, after passing to a subnet if necessary, we can assume
that ϕα ∈ φ−1(U) for every α and that ϕα → ϕ for some ϕ ∈ Δ(A). Then
ϕ ∈ φ−1(t) since φ(ϕα) = sα → t. Hence x̂ belongs locally to I at ϕ and since
ϕα → ϕ, the same is true at ϕα for large α. This contradiction shows that S
is closed in T .

Because x̂ belongs locally to I at all points of E◦ and of Δ(A)\E (Lemma
5.1.3), it follows that

supp x̂ ∩ φ−1(t) ∩ ∂(E) �= ∅

for every t ∈ S. Thus S ⊆ φ(supp x̂ ∩ ∂(E)) and since φ(∂(E)) is scattered,
so is its compact subset φ(supp x̂∩ ∂(E)). Hence S, being closed, is scattered
as well. Suppose that S �= ∅. Then S has an isolated point t.

Fix an open subset U of T such that U ∩ S = {t} and let V = φ−1(U)
and K = supp x̂ ∩ φ−1(t) ∩ ∂(E). Then K is compact and V is an open
neighbourhood of K. Moreover, choose an open neighbourhood W of K such
that W ⊆ V .

Since A is regular, there exists a ∈ A such that â = 0 on Δ(A) \ W and
â = 1 on a neighbourhood of K (Theorem 4.2.8). By hypothesis, the compact
subset K of φ−1(t) is a Ditkin set. Since x ∈ k(K), there exists a sequence
(an)n in j(K) so that ‖anx − x‖ → 0 and hence ‖anax − ax‖ → 0.

We claim that anax ∈ I. This follows from the three facts that
(1) an ∈ j(∂(E) ∩ supp x̂ ∩ φ−1(t)),
(2) x belongs locally to I at every point of Δ(A)\(∂(E)∪supp x̂), at every

point of V \ φ−1(t) and at infinity,
(3) a belongs locally to I at all points of Δ(A)\W , so at points of Δ(A)\V .
As A is semisimple, we infer that anax ∈ I for all n and hence ax ∈ I.

Now, â = 1 in a neighbourhood of K and consequently x̂ belongs locally to
I at all points of φ−1(t). This contradiction shows that S = ∅ and completes
the proof. �	

If T = Δ(A) and φ is the identity map, Theorem 5.2.13 reduces to the
Wiener–Ditkin theorem. Theorem 5.2.13 in particular applies when E is open
and closed in Δ(A). In this case, however, the hypotheses on A can be weak-
ened. Nevertheless, the proof of the following proposition is very similar to
the one of Theorem 5.2.13.

Proposition 5.2.14. Let A be a regular and semisimple commutative Banach
algebra and let E be an open and closed subset of Δ(A).

(i) If A is Tauberian and x ∈ Ax for every x ∈ k(E), then E is a set of
synthesis.
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(ii) If A satisfies Ditkin’s condition at infinity, then E is a Ditkin set.

Proof. (i) Let x ∈ k(E) and I = j(E). By Lemma 5.1.3, x̂ belongs locally to I
at every point of Δ(A) \E and, since E is open, at every point of E ⊆ h(x)◦.
Because x ∈ Ax and A is Tauberian, there exist yk ∈ A, k ∈ N, such that each
ŷk has compact support and ykx → x as k → ∞. Then ykx belongs locally to
I at every point of Δ(A) and at infinity. Since A is semisimple, ykx ∈ I and
hence x = lim

k→∞
ykx ∈ I.

(ii) Since E is open and closed in Δ(A),

h(j(E) + j(Δ(A) \ E)) = E ∩ (Δ(A) \ E) = ∅.

Thus, since ∅ is a Ditkin set, for every x ∈ A there exist sequences (un)n ⊆
j(E) and (vn)n ⊆ j(Δ(A) \E) such that x(un + vn) → x. Now, let x ∈ k(E).
Then xvn = 0 since A is semisimple and x̂vn vanishes on E and on Δ(A) \E.
So x = limn→∞ xun ∈ x j(E), as required. �	

Supppose that spectral synthesis holds for A. Then x ∈ Ax for every
x ∈ A. Indeed, let E = h(x) = h(Ax). Since E is a spectral set, k(E) = Ax
and hence x ∈ Ax. The following corollary is now an immediate consequence
of Proposition 5.2.14.

Corollary 5.2.15. Let A be a semisimple and regular commutative Banach
algebra. Suppose that A is Tauberian and that Δ(A) is discrete. Then spectral
synthesis holds for A if and only if x ∈ Ax for each x ∈ A.

As we show in Section 5.5, it follows from Corollary 5.2.15 that spectral
synthesis holds for L1(G), where G is a compact Abelian group.

5.3 Ideals in Cn[0, 1]

In this section we present what is known about the ideal structure of the
regular commutative Banach algebra Cn[0, 1], n ≥ 1. We have observed in
Example 2.2.9 that the map a → ϕa, where ϕa(f) = f(a) for f ∈ Cn[0, 1],
provides a homeomorphism from [0, 1] onto Δ(Cn[0, 1]). In what follows we
therefore identify Δ(Cn[0, 1]) with [0, 1]. The algebras Cn[0, 1] are the simplest
examples of regular semisimple commutative Banach algebras A for which sin-
gletons in Δ(A) fail to be sets of synthesis. More precisely, we show that given
any a ∈ [0, 1], there are exactly n + 1 different closed ideals in Cn[0, 1] with
hull equal to {a}. Such ideals with a one-point hull are usually called primary
ideals. Even though singletons in Δ(Cn[0, 1]) fail to be sets of synthesis, it
turns out that every proper closed ideal in Cn[0, 1] is the intersection of all
the closed primary ideals containing it.

Recall that the smallest ideal with hull {a}, j(a), consists of all functions
in Cn[0, 1] which vanish in a neighbourhood of a. We begin with a description
of j(a).



270 5 Spectral Synthesis and Ideal Theory

Theorem 5.3.1. j(a) = {f ∈ Cn[0, 1] : f (i)(a) = 0 for 0 ≤ i ≤ n}.

Proof. Let M denote the set of all such functions on the right-hand side. Then
M is closed in Cn[0, 1] because the maps f → f (i)(a), Cn[0, 1] → C, 0 ≤ i ≤ n,
are continuous. Clearly, j(a) ⊆ M , and hence j(a) ⊆ M .

Conversely, let f ∈ M be given and define a sequence of functions fm :
[0, 1] → C, m ∈ N, by

fm(t) =

⎧

⎪

⎨

⎪

⎩

f(t − 1
m ) for t ∈ [a + 1

m , 1],

0 for t ∈ [a − 1
m , a + 1

m ],

f(t + 1
m ) for t ∈ [0, a− 1

m ].

We claim that fm ∈ Cn[0, 1] (and hence fm ∈ j(a)), and that the derivatives
of fm are given by the formula

f (i)
m (t) =

⎧

⎪

⎨

⎪

⎩

f (i)(t − 1
m ) for t ∈ [a + 1

m , 1],

0 for t ∈ [a − 1
m , a + 1

m ],

f (i)(t + 1
m ) for t ∈ [0, a − 1

m ].

Obviously, the function fm is n-times continuously differentiable on the set
[0, 1]\ {a−1/m, a+1/m} and there its derivatives satisfy the stated formula.
Our claim for the whole interval [0, 1] now results from the following well-
known fact which is a consequence of the mean value theorem. If a continuous
function g : [0, 1] → C is continuously differentiable on [0, 1] \ F , where F is
a finite set, and g′ admits a continuous extension h : [0, 1] → C, then g is
differentiable on [0, 1] and g′ = h.

It remains to show ‖f (i)
m − f (i)‖∞ → 0 for 0 ≤ i ≤ n. To this end, fix i

and set g = f (i) and gm = f
(i)
m , and let ε > 0 be given. Because g is uniformly

continuous there exists δ > 0 such that |g(t) − g(s)| ≤ ε for all t, s ∈ [0, 1]
with |t − s| ≤ δ. The above formula for f

(i)
m then yields that ‖gm − g‖∞ ≤ ε

for all m with m > 1/δ. Indeed, if t ∈ [a − 1/m, a + 1/m], then

|gm(t) − g(t)| = |g(t)| = |g(t) − g(a)| ≤ ε,

whereas, if t ∈ [a + 1/m, 1], then

|gm(t) − g(t)| =
∣

∣

∣

∣

g

(

t − 1
m

)

− g(t)
∣

∣

∣

∣

≤ ε,

and if t ∈ [0, a − 1/m], then

|gm(t) − g(t)| =
∣

∣

∣

∣

g

(

t +
1
m

)

− g(t)
∣

∣

∣

∣

≤ ε,

as required. �	



5.3 Ideals in Cn[0, 1] 271

Our next goal is to determine the closed primary ideals in Cn[0, 1] with
hull {a}. Recall that these are just the closed ideals P in Cn[0, 1] with

j(a) ⊆ P ⊆ k(a).

For that, we show that Cn[0, 1]/j(a) is algebraically isomorphic to a certain
quotient of C[X ], the ring of complex polynomials in one variable X .

Lemma 5.3.2. For each a ∈ [0, 1], the quotient algebra Cn[0, 1]/j(a) is iso-
morphic to the (n+1)-dimensional algebra C[X ]/J , where J denotes the ideal
in C[X ] generated by Xn+1.

Proof. Define φ : Cn[0, 1] → C[X ]/J by

φ(f) =
n
∑

i=0

1
i!

f (i)(a)X i + J.

φ is a homomorphism because, for f, g ∈ Cn[0, 1],

φ(f)φ(g) =
n
∑

i,k=0

1
i!k!

f (i)(a)g(k)(a)X i+k + J

=
n
∑

k=0

(

k
∑

i=0

1
i!(k − i)!

f (i)(a)g(k−i)(a)

)

Xk + J

=
n
∑

k=0

1
k!

(

k
∑

i=0

(

k

i

)

f (i)(a)g(k−i)(a)

)

Xk + J

=
n
∑

k=0

1
k!

(fg)(k)(a)Xk + J

= φ(fg).

It follows from Theorem 5.3.1 that the kernel of φ coincides with j(a). Finally,
φ is surjective since, for any c1, . . . , cn ∈ C,

n
∑

i=0

ciX
i + J = φ

(

n
∑

i=0

ci(X − a)i
)

.

Thus Cn[0, 1]/j(a) is algebraically isomorphic to C[X ]/J . �	

The ideals of C[X ]/J are easy to determine. For sake of completeness we
include the arguments.

Lemma 5.3.3. Let J be as in Lemma 5.3.2. There are exactly n + 1 proper
ideals in C[X ]/J .
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Proof. For 0 ≤ k ≤ n + 1, let Ik denote the ideal in C[X ] generated by Xk.
Then

J = In+1 � In � . . . � I0 = C[X ]

since Xk ∈ Ik \Ik+1, 0 ≤ k ≤ n. It therefore suffices to show that every proper
ideal I in C[X ] strictly containing J coincides with some Ik. Because C[X ]
is a principal ideal domain, I = C[X ]p for some polynomial p of degree ≥ 1.
Write

p =
n
∑

i=m

ciX
i + qXn+1,

where q ∈ C[X ] and cm �= 0. Clearly I ⊆ Im, and we claim that conversely
Im ⊆ I. We have

Xn−mp = cmXn + Xn+1g

for some g ∈ C[X ]. Since J ⊆ I, p ∈ I, and cm �= 0, we obtain that Xn ∈ I
and hence

n−1
∑

i=m

ciX
i = p − cnXn − qXn+1 ∈ I.

If m < n, by the same argument as before, we conclude from this that Xn−1 ∈
I. Continuing in this manner, we finally end up with Xm ∈ I. This shows
Im ⊆ I. So I = Im, and this establishes the lemma. �	

Lemmas 5.3.2 and 5.3.3 now quickly lead to a description of all the closed
primary ideals in Cn[0, 1].

Theorem 5.3.4. Given a ∈ [0, 1], there are exactly n+1 closed primary ideals
in Cn[0, 1] with hull equal to {a}, namely the ideals

Pa,m = {f ∈ Cn[0, 1] : f (i)(a) = 0 for 0 ≤ i ≤ m}, 0 ≤ m ≤ n.

Proof. It is clear that h(Pa,m) = {a} and that Pa,m is properly contained in
Pa,k for m > k. The statement now follows from Lemmas 5.3.2 and 5.3.3. �	

We show next that j(a) contains an (unbounded) approximate identity.
This is a first step towards the main result stated at the outset of this sec-
tion. Some of the proofs that follow are fairly intricate and employ the local
membership principle in a substantial manner. Actually, the ideals Pa,m don’t
possess bounded approximate identities (see Exercise 5.8.12).

Lemma 5.3.5. There exists a sequence (um)m in j(a) such that

lim
m→∞

‖f − fum‖ = 0

for every f ∈ j(a).
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Proof. We choose functions g0 and g1 in Cn[0, 1] with the following properties:

g
(i)
k (0) = 0 = g

(i)
k (1) for k = 0, 1 and all 1 ≤ i ≤ n

and
g0(0) = 0 = g1(1), g0(1) = 1 = g1(0).

For each m ∈ N, define um : [0, 1] → C by

um(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 for t ∈ [a + 2
m , 1],

g0(m(t − a) + 1) for t ∈ [a + 1
m , a + 2

m ],

0 for t ∈ [a − 1
m , a + 1

m ],

g1(m(t − a) + 2) for t ∈ [a − 2
m , a − 1

m ],

1 for t ∈ [0, a − 2
m ].

As in the proof of Theorem 5.3.1, it is straightforward to verify that um ∈
Cn[0, 1] and that

u(i)
m (t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 for t ∈ [a + 2
m , 1],

mig
(i)
0 (m(t − a) + 1) for t ∈ [a + 1

m , a + 2
m ],

0 for t ∈ [a − 1
m , a + 1

m ],

mig
(i)
0 (m(t − a) + 2) for t ∈ [a − 2

m , a − 1
m ],

0 for t ∈ [0, a − 2
m ],

1 ≤ i ≤ n. Clearly um ∈ j(a), and we show that ‖f − fum‖ → 0 as m → ∞
for every f ∈ j(a). Set

ci = max(‖g(i)
0 ‖∞, ‖g(i)

1 ‖∞),

so that ‖u(i)
m ‖ ≤ mici for 0 ≤ i ≤ n. Fix f , and for t ≥ 0 and 0 ≤ i ≤ n, let

εi(t) = max{|f (i)(s)| : s ∈ [a − t, a + t] ∩ [0, 1]}.

Because f (i)(a) = 0 for 0 ≤ i ≤ n (Theorem 5.3.1), we infer from the mean
value theorem that εi−1(t) ≤ t εi(t) and therefore

εi−k(t) ≤ tk εi(t), 0 ≤ k ≤ i ≤ n.

Finally, with Tm = [a − 2/m, a + 2/m] ∩ [0, 1] and using the above formula
for the derivatives u

(i)
m , we can now estimate the norms ‖(f − fum)(i)‖∞ as

follows:

‖(f − fum)(i)‖∞ = max
t∈[0,1]

∣

∣

∣

∣

∣

f (i)(t) −
i
∑

k=0

(

i

k

)

f (k)(t)u(i−k)
m (t)

∣

∣

∣

∣

∣
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≤ max
t∈[0,1]

|f (i)(t) − f (i)(t)um(t)|

+
i−1
∑

k=0

(

i

k

)

max
t∈[0,1]

|f (k)(t)u(i−k)
m (t)|

≤ (1 + ‖um‖∞) max
t∈Tm

|f (i)(t)|

+
i−1
∑

k=0

(

i

k

)

‖u(i−k)
m ‖∞ max

t∈Tm

|f (k)(t)|

≤ (1 + c0)εi

( 1
m

)

+
i−1
∑

k=0

(

i

k

)

mi−kci−kεk

( 2
m

)

≤ (1 + c0)
( 2

m

)n−i

εn

( 2
m

)

+
i−1
∑

k=0

(

i

k

)

mi−kci−k

( 2
m

)n−k

εn

( 2
m

)

≤ εn

( 2
m

)

· 2n
(

1 +
i
∑

k=0

(

i

k

)

ci−k

)

.

Notice that εn(2/m) → 0 as m → ∞ because f (n)(a) = 0. Consequently
‖(f − fum)(i)‖∞ → 0 for all 0 ≤ i ≤ n and hence ‖f − fum‖ → 0. �	

As an immediate consequence of Lemma 5.3.5 and Lemma 5.1.14 we note
the following

Corollary 5.3.6. Let I be a closed ideal in Cn[0, 1] and f ∈ Cn[0, 1], and let
Δ(f, I) denote the set of all a ∈ [0, 1] such that f does not belong locally to I
at a. If a is an isolated point of Δ(f, I), then f does not belong locally to j(a)
at a.

Lemma 5.3.7. Let f ∈ Cn[0, 1] and suppose that a is an accumulation point
of h(f), the zero set of f . Then f ∈ j(a).

Proof. According to Theorem 5.3.1, it suffices to show that f (m)(a) = 0 for
0 ≤ m ≤ n. This is done by induction on m, the case m = 0 being clear.
Thus, let m > 1 and assume that f (i)(a) = 0 for i < m. By hypothesis, there
is a sequence (ak)k in h(f) such that ak �= a for all k and ak → a. By Taylor’s
formula,

0 = f (m)(ak) =
(ak − a)m

m!
f (m)(a + θk(ak − a)),

where |θk| ≤ 1. It follows that f (m)(a + θk(ak − a)) = 0 for all k and hence
f (m)(a) = 0 by continuity of f (m). �	

Lemma 5.3.8. Let I be a closed ideal in Cn[0, 1] and a an isolated point of
h(I). If I ⊆ j(a), then every f ∈ j(a) belongs locally to I at a.
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Proof. Assume that some f ∈ j(a) does not belong locally to I at a. By
hypothesis, there is an open set in U in [0, 1] such that U ∩ h(I) = {a}.
Because Cn[0, 1] is regular, f belongs locally to I at every point outside h(I)
(Lemma 5.1.3), so in particular at every point of U \{a}. Hence a is an isolated
point of Δ(f, I). Corollary 5.3.6 now shows that a ∈ Δ

(

f, j(a)
)

, which is a
contradiction. �	

The next lemma generalises Lemma 5.3.8 and is another substantial tool
in proving Theorem 5.3.10 below.

Lemma 5.3.9. Let I and a be as in Lemma 5.3.8, and let m ≤ n be maximal
with the property that

I ⊆ Pa,m = {g ∈ Cn[0, 1] : g(i)(a) = 0 for 0 ≤ i ≤ m}.

Then every function in Pa,m belongs locally to I at a.

Proof. We can assume m < n, the case m = n having been dealt with in
Lemma 5.3.8. Let f ∈ Pa,m and define h ∈ Cn[0, 1] by

h(t) = f(t) −
n
∑

i=m+1

f (i)(a)
i!

(t − a)i, t ∈ [0, 1].

It is clear that h(k)(a) = 0 for 0 ≤ k ≤ m since f ∈ Pa,m. However, for
k ≥ m + 1 we also have

h(k)(a) = f (k)(a) − f (k)(a)
k!

[(t − a)k](k)(a) = 0.

Theorem 5.3.1 now yields h ∈ j(a), and hence h belongs locally to I at a by
Lemma 5.3.8.

Now, fix f ∈ Pa,m and let h be as above. To prove that f belongs locally to
I at a, it suffices to show that each of the functions t → (t−a)i, m+1 ≤ i ≤ n,
belongs locally to I at a. Because I �⊆ Pa,m+1, there exists g ∈ I such that
g(m+1)(a) �= 0. Since g ∈ Pa,m, the first paragraph of the proof applies to g
and shows that the function h defined by

h(t) = g(t) −
n
∑

i=m+1

g(i)(a)
i!

(t − a)i

belongs locally to I at a. Now, for 0 ≤ k ≤ d = n − (m + 1), define gk by

gk(t) = (t − a)d−kg(t) =
gm+1(a)
(m + 1)!

(t − a)n−k + rk(t) + hk(t),

where hk(t) = (t − a)d−kh(t) and
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rk(t) = (t − a)n−k+1
n
∑

i=m+2

g(i)(a)
i!

(t − a)i−(m+2).

Then, for all 0 ≤ k ≤ d, gk ∈ I and hk belongs locally to I at a since h does
so. All the derivatives up to order n of r0 vanish at a, so that r0 ∈ j(a) by
Theorem 5.3.1. Hence r0 belongs locally to I at a by Lemma 5.3.8. Because
the same is true of g0 and h0 and since g(m+1)(a) �= 0, we conclude that
(t − a)n belongs locally to I at a. It is now easy to proceed by induction on
k. Indeed, if (t − a)n−k belongs locally to I at a, then so does

rk+1(t) = (t − a)n−k
n
∑

i=m+2

g(i)(a)
i!

(t − a)i−(m+2)

and hence also (t − a)n−(k+1) since

g(m+1)(a)
(m + 1)!

(t − a)n−(k+1) = gk+1(t) − rk+1(t) − hk+1(t)

and g(m+1)(a) �= 0. Thus f belongs locally to I at a. �	

Now we are prepared for the main result of this section.

Theorem 5.3.10. Every proper closed ideal I of Cn[0, 1] is the intersection
of all the closed primary ideals containing I.

Proof. Denote by P the set of all ideals Pa,m, a ∈ [0, 1], 0 ≤ m ≤ n, which
contain I, and let

F = {a ∈ [0, 1] : j(a) = Pa,n ∈ P}.

Evidently, F is closed in [0, 1]. Moreover, let D be the set of all relatively
open intervals D in [0, 1] such that D ∩ F = ∅ and the boundary ∂(D) of D
is contained in F . Then [0, 1] \ F =

⋃

{D : D ∈ D} because the connected
component of every point in [0, 1]\F is an interval which is open and closed in
[0, 1]\F and hence cannot have a boundary point in [0, 1]\F . Notice next that
due to the condition ∂(D) ⊆ F , any two distinct intervals in D are disjoint.

Now, let f ∈
⋂

{P : P ∈ P} and for D ∈ D set

‖f‖D = max
0≤k≤n

‖f (k)|D‖∞.

We claim that for any δ > 0, there are only finitely many D ∈ D such that
‖f‖D ≥ δ. Assuming that this is false, for some 0 ≤ m ≤ n and η > 0, there
exist infinitely many Di ∈ D and ai ∈ Di, i ∈ N, with Di ∩ Dk = ∅ for i �= k
and |f (m)(ai)| ≥ η. Of course, after passing to a subsequence if necessary, we
can assume that ai → a for some a ∈ [0, 1] and that ai ≤ a for all i. The
sets Di being disjoint, we have a �∈ Di for all i. Thus, for each i, there is a



5.3 Ideals in Cn[0, 1] 277

boundary point bi of Di with ai ≤ bi ≤ a. Because ∂(Di) ⊆ F , f (m)(bi) = 0
and hence

f (m)(a) = lim
i→∞

f (m)(bi) = 0.

This contradicts the fact that |f (m)(ai)| ≥ η for all i and hence establishes
the above claim.

To finish the proof of the theorem, we show that given ε > 0, there exists
fε ∈ I with ‖f − fε‖ ≤ ε. By what we have seen in the last paragraph, there
exists r ∈ N such that ‖f‖Di < ε/3 for all i > r. Define fε : [0, 1] → C by

fε(t) =

{

f(t) if t ∈
⋃r

i=1 Di,

0 if t �∈
⋃r

i=1 Di.

Then fε is n-times continuously differentiable on V =
⋃r

i=1 Di and on W =
[0, 1] \V , and f

(k)
ε (t) = f (k)(t) for t ∈ V and f

(k)
ε (t) = 0 for t ∈ W . The finite

set ∂(V ) is contained in F , so that f (k)|∂(V ) = 0 and f
(k)
ε extends continuously

from V ∪ W to [0, 1]. It follows that fε ∈ Cn[0, 1] and f
(k)
ε (t) = f (k)(t) for

t ∈
⋃r

i=1 Di and f
(k)
ε (t) = 0 for t �∈

⋃r
i=1 Di. From this we conclude

‖f − fε‖ =
n
∑

k=0

1
k!
‖(f (k) − f (k)

ε )‖[0,1]\∪r
i=1Di

‖∞

=
n
∑

k=0

1
k!
‖f (k)|[0,1]\∪r

i=1Di
‖∞

=
n
∑

k=0

1
k!

sup{‖f (k)|D‖∞ : D ∈ D, D �= Di, 1 ≤ i ≤ r}

≤ ε

3

n
∑

k=0

1
k!

≤ ε.

It remains to show that fε ∈ I. To that end, by Theorem 5.1.2 it suffices to
prove Δ(fε, I) = ∅. Notice first that

Δ(fε, I) ⊆
r
⋃

i=1

Di

since fε vanishes on the open set [0, 1] \
⋃r

i=1 Di. Moreover, fε belongs locally
to I at every a �∈ h(I) (Lemma 5.1.3). If a is an accumulation point of h(I)
and hence of h(g) for each g ∈ I, then g(k)(a) = 0 for all g ∈ I and 0 ≤ k ≤ n
by Lemma 5.3.7, so that a ∈ F . Thus, because D ∩ F = ∅ for D ∈ D, every
a ∈ h(I) ∩ (

⋃r
i=1 Di) is an isolated point of h(I). An application of Lemma

5.3.9 shows that f belongs locally to I at every a ∈ h(I) ∩
(
⋃r

i=1 Di

)

, and
then so does fε since fε and f coincide on

⋃r
i=1 Di. Thus we have seen so far

that
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Δ(fε, I) ⊆ ∂

( r
⋃

i=1

Di

)

=
r
⋃

i=1

∂(Di),

which is a finite subset of F . Therefore, if a ∈ Δ(fε, I), then j(a) ∈ P and
hence

f (k)
ε (a) = f (k)(a) = 0 for 0 ≤ k ≤ n.

Thus fε ∈ j(a) by Theorem 5.3.1. However, this contradicts Corollary 5.3.6
since Δ(fε, I) is finite. �	

5.4 Spectral synthesis in the Mirkil algebra

Let A be a regular and semisimple commutative Banach algebra. Recall that
we have shown in Theorem 5.2.5 that if E and F are closed subsets of Δ(A)
such that E ∩ F is a Ditkin set, then E ∪ F is a set of synthesis if and
only if both E and F are sets of synthesis. This does not remain true if
the hypothesis that E ∩ F be a Ditkin set is dropped. In fact, the so-called
Mirkil algebra M , which we study in detail in this section, even has a discrete
structure space and nevertheless the union of two disjoint sets of synthesis
need not be a set of synthesis and subsets of sets of synthesis need not be
sets of synthesis. Moreover, M serves as a counterexample to several other
conjectures in spectral synthesis. We start by introducing M and determining
its structure space.

In what follows we identity the torus T with the interval [−π, π). Multi-
plication in T then turns into addition modulo 2π. Let

M = {f ∈ L2(T) : f |[−π/2,π/2] is continuous}.

Clearly, M is a linear space and

‖f‖ =
√

2π‖f‖2 + ‖f |[−π/2,π/2]‖∞

defines a norm on M . With this norm, M is complete. Indeed, let (fn)n be
a Cauchy sequence in M . Then fn → f in L2(T) and gn = fn|[−π/2,π/2] → g
uniformly on [−π/2, π/2] for some continuous function g, and the function
h, defined by h(t) = f(t) for t ∈ [−π, π) \ [−π/2, π/2] and h(t) = g(t) for
t ∈ [−π/2, π/2], belongs to M and satisfies ‖fn − h‖ → 0.

Lemma 5.4.1. For f, g ∈ M define f ∗ g on T by

(f ∗ g)(x) =
1
2π

∫

T

f(x − t)g(t)dt.

Then f ∗ g ∈ C(T), and with this convolution product M becomes a commu-
tative Banach algebra.
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Proof. Observe first that, for x, y ∈ G,

|(f ∗ g)(x−1) − (f ∗ g)(y−1)| ≤ 1
2π

‖g‖2‖Lxf − Lyf‖2.

The map x → Lxf from R into L2(T) is continuous. Thus we conclude that
f ∗ g is continuous. So M is an algebra, and it only remains to show that the
norm ‖ · ‖ is submultiplicative. For that, note that

‖f ∗ g‖2
2 =

1
2π

∫ π

−π

∣

∣

∣

∣

1
2π

∫ π

−π

f(x − t)g(t)dt

∣

∣

∣

∣

2

dx

≤ 1
2π

∫ π

−π

1
4π2

(∫ π

−π

|f(x − t)|2dt ·
∫ π

−π

|g(t)|2dt

)

dx

= ‖f‖2
2 · ‖g‖2

2

by Hölder’s inequality, and

|(f ∗ g)(x)| ≤ 1
2π

‖f‖2‖g‖2.

Combining these two inequalities yields

‖f ∗ g‖ =
√

2π‖f ∗ g‖2 + ‖(f ∗ g)|[−π/2,π/2]‖∞

≤
(√

2π +
1
2π

)

‖f‖2‖g‖2 ≤ 2π‖f‖2‖g‖2

≤
(√

2π‖f‖2 + ‖f |[−π/2,π/2]‖∞
)

·
(√

2π‖g‖2 + ‖g|[−π/2,π/2]‖∞
)

= ‖f‖ · ‖g‖,

as required. �	

For n ∈ Z, let en denote the function en(t) = eint, t ∈ [−π, π).

Lemma 5.4.2. The linear span of the functions en, n ∈ Z, is dense in M .

Proof. By the Stone–Weierstrass theorem, the trigonometric functions are
uniformly dense in C(T), and hence also dense in the ‖ · ‖2-norm. Thus the
trigonometric functions are dense in (C(T), ‖ · ‖). It therefore suffices to show
that C(T) is dense in M .

To that end, let f ∈ M and ε > 0 be given. As C(T) is dense in L2(T),
we find h ∈ C(T) with ‖f − h‖2 ≤ ε. Choose 0 < δ < π/2 such that

δ
(

‖h‖∞ + ‖f |[−π/2,π/2]‖∞
)2 ≤ πε2.

Define functions k : [π/2, π/2 + δ] → C by

k(t) = f(π/2) +
1
δ

(

t − π/2
)(

h(t) − f(π/2)
)



280 5 Spectral Synthesis and Ideal Theory

and l : [−π/2 − δ,−π/2] → C by

l(t) = f(−π/2) − 1
δ

(

π/2 + t
)(

h(t) − f(−π/2)
)

.

Finally, we define g on [−π, π) by

g(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

h(t) for |t| ≥ π/2 + δ,
f(t) for |t| ≤ π/2,
k(t) for π/2 ≤ t ≤ π/2 + δ,
l(t) for − π/2 − δ ≤ t ≤ −π/2.

Then, because g(t) = h(t) for |t| ≥ π/2 + δ and g(t) = f(t) for |t| ≤ π/2, it
follows that, with I = [−π/2 − δ,−π/2] ∪ [π/2, π/2 + δ],

‖f − g‖ =
√

2π‖f − g‖2 ≤
√

2π(ε + ‖(g − h)1I‖2)

≤
√

2π

(

ε +

√

δ

π

(

‖h‖∞ + ‖f |[−π/2,π/2]‖∞
)

)

≤ 2ε
√

2π.

This shows that C(T) is dense in M . �	

We now identify the structure space of M .

Theorem 5.4.3. For n ∈ Z, define ϕn : M → C by

ϕn(f) =
1
2π

∫

T

f(t)e−n(t)dt, f ∈ M.

Then ϕn ∈ Δ(M) and the map n → ϕn is a homeomorphism from Z onto
Δ(M).

Proof. It is easy to check that ϕn ∈ Δ(M). Moreover, since ϕn(em) �= 0 if
and only if m = n, the map n → ϕn is injective. Observe next that given
ϕ ∈ Δ(M), there exists n ∈ Z so that ϕ = ϕn. Indeed, en ∗ em = δnmen and
therefore

ϕ(en)ϕ(em) = δnmϕ(en)

for all n, m ∈ Z, and ϕ(en) �= 0 for some n since the trigonometric polynomials
are dense in M (Lemma 5.4.2). Thus, for such n ∈ N,

ϕ(em) = δnm = ϕn(em)

for all m ∈ Z, and this implies that ϕ = ϕn because ϕ and ϕn agree on the
trigonometric polynomials.

It remains to verify that Δ(M) is discrete. However, this is obvious since,
for each n ∈ N,
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U(ϕn, en, 1) = {ϕ ∈ Δ(M) : |ϕ(en) − ϕn(en)| < 1}
= {ϕm ∈ Δ(M) : |ϕm(en) − 1| < 1}
= {ϕn}

since ϕm(en) = δnm for all m ∈ Z. �	

Corollary 5.4.4. M is semisimple and regular.

Proof. If f ∈ M is such that ̂f = 0, then 〈f, en〉 = 0 for all n ∈ Z. Because the
functions en, n ∈ Z, form an orthonormal basis of L2(T), f = 0 in L2(T) and
then also f(t) = 0 for all t ∈ [−π/2, π/2] since f is continuous on [−π/2, π/2].
So M is semisimple.

Let E be any subset of Z and n ∈ Z\E. Then the function f = en satisfies
̂f(ϕn) = 1 and ̂f(ϕk) = 0 for all k �= n. Thus M is regular. �	

In order to find spectral sets E in Z = Δ(M), an explicit description of
j(E) is required.

Lemma 5.4.5. Let E be any subset of Z. Then j(E) equals the linear span
of all functions en, where n ∈ Z \ E.

Proof. Clearly, if n �∈ E, then en ∈ j(E) since ϕm(en) = 0 for all m �= n, so
for all m ∈ E.

Conversely, let f ∈ j(E) and let F = {n ∈ Z : ϕn(f) �= 0}. Then F is a
finite subset of Z \ E. Let p =

∑

n∈F ϕn(f)en. Then, for each m ∈ Z,

ϕm(p) =
∑

n∈F

ϕn(f)ϕm(en) =
∑

n∈F

δnmϕn(f) = ϕm(f).

Since M is semisimple, f = p which is of the desired form. �	

Corollary 5.4.6. A subset E of Z is a spectral set for M if and only if k(E)
is contained in the closed linear span of all functions en, where n ∈ Z \ E.

Proof. Because M is semisimple and regular, E is a spectral set if and only
if k(E) = j(E). The statement now follows immediately from the preceding
lemma. �	

Corollary 5.4.7. Let E ⊆ Z and m ∈ Z. Then E is a spectral set for M if
and only if E + m = {n + m : n ∈ E} is a spectral set for M .

Proof. Of course, it suffices to show that if E is a spectral set, then so is
E + m. Let f ∈ k(E + m) and let g ∈ M be defined by g(t) = f(t)e−imt.
Then, for each n ∈ E,

ϕn(g) =
1
2π

∫

T

f(t)e−i(n+m)tdt = ϕn+m(f) = 0,
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whence g ∈ k(E). Since E is spectral set, given ε > 0, by Corollary 5.4.6 there
exist n1, . . . , nr ∈ Z \ E and c1, . . . , cr ∈ C such that

∥

∥

∥

∥

∥

∥

g −
r
∑

j=1

cjenj

∥

∥

∥

∥

∥

∥

≤ ε.

Thus, with h =
∑r

j=1 cjenj ,

‖f − hem‖ = ‖(g − h)em‖ = ‖g − h‖ ≤ ε.

Since nj + m ∈ Z \ (E + m), hem =
∑r

j=1 cjenj+m ∈ j(E + m). Since ε > 0
was arbitrary, it follows that f ∈ j(E + m). So E + m is a spectral set. �	

We continue to identify Δ(M) with Z.

Theorem 5.4.8. Let E and F be subsets of Z such that E ⊆ F and F \E is
finite. Then E is a set of synthesis for M if and only if F is a set of synthesis
for M .

Proof. Suppose first that E is a spectral set. To show that F is a spectral set,
proceeding inductively, it suffices to treat the case where F = E ∪ {m} for
some m ∈ Z\E. Let f ∈ k(F ) and ε > 0 be given. There exists g ∈ j(E) such
that ‖f − g‖ ≤ ε. Let h = g − ĝ(m)em ∈ M . Then ̂h has finite support and
vanishes on F . Indeed, ̂h(m) = 0 and ̂h vanishes on E since both ĝ and êm

vanish on E as m �∈ E. Moreover

‖f − h‖ ≤ ‖f − g‖ + |ĝ(m)| · ‖em‖
= ‖f − g‖ + | ̂f(m) − ĝ(m)|(1 +

√
2π)

≤ ‖f − g‖(2 +
√

2π).

Because h ∈ j(F ) and ‖f − g‖ ≤ ε and ε > 0 is arbitrary, it follows that F is
a spectral set.

To prove the converse statement of the theorem, we can again assume that
F = E ∪ {m} for some m ∈ Z. Thus, suppose that F is a spectral set and let
f ∈ k(E) and ε > 0 be given. Then f − f ∗ em ∈ k(F ), and hence there exists
g ∈ j(F ) such that ‖(f − em ∗ f) − g‖ ≤ ε. Since êm ∗ f(n) = êm(n) ̂f(n) = 0
for all n ∈ E and êm has support {m}, it follows that g + em ∗ f ∈ j(E). This
finishes the proof. �	

Of course, Theorem 5.4.8 can be reformulated as follows. Let E and F be
subsets of Z such that the symmetric difference of E and F is finite. Then
E is a set of synthesis if and only F is a set of synthesis. We now prove an
analogous result for Ditkin sets.

Theorem 5.4.9. Let E and F be subsets of Z such that F ⊆ E.
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(i) If F is a Ditkin set, so is E.
(ii) If E is a Ditkin set and E \ F is finite, then F is a Ditkin set.

Proof. (i) Because, by Theorem 5.2.2, a closed countable union of Ditkin sets
is a Ditkin set, it suffices to show that if F is a Ditkin set and m ∈ Z \ F ,
then E = F ∪ {m} is a Ditkin set.

Let f ∈ k(E) and ε > 0 be given. Since F is a Ditkin set, there exists
u ∈ j(F ) such that ‖f − u ∗ f‖ ≤ ε. Then u − u ∗ em ∈ j(E) since u ∈ j(F )
and êm(m) = 1. Also f̂ ∗ em = 0 since ̂f(m) = 0 and êm(n) = 0 for all n �= m.
So f ∗ em = 0 and therefore

‖f − (u − u ∗ em) ∗ f‖ = ‖f − u ∗ f‖ ≤ ε.

This shows that E is a Ditkin set.
As in the proof of Theorem 5.4.8, to show (ii) we can assume that E =

F ∪ {m}, where m ∈ Z \ F . Let f ∈ k(F ) and ε > 0. Then f − em ∗ f ∈ k(E)
and hence there exists g ∈ j(E) such that

‖(f − em ∗ f) − g ∗ (f − em ∗ f)‖ ≤ ε.

Let h = g ∗ em − g − em ∈ M . Then ‖f − h ∗ f‖ ≤ ε and ̂h has finite support
and vanishes on E, as desired. �	

Next we present useful characterisations of spectral sets in terms of the
dual space M∗ of M . To that end, we need some insight into how M∗ looks.
Let

E = L2(T) ⊕ C([−π/2, π/2])

and equip E with the norm ‖(g, h)‖ = ‖g‖2 + ‖h‖∞, g ∈ L2(T), h ∈
C([−π/2, π/2]). The mapping f → (f, f |[−π/2,π/2]) is an isometric isomor-
phism of M onto a closed linear subspace of E. Thus, by the Hahn–Banach
theorem, every element of M∗ is the restriction to M of some element of E∗.
Recall that

E∗ = L2(T)∗ ⊕ C([−π/2, π/2])∗ = L2(T) ⊕ M([−π/2, π/2])

with norm given by
‖(g, μ)‖ = max(‖g‖2, |μ|(T))

for g ∈ L2(T) and μ ∈ M([−π/2, π/2]). Here |μ|(T) denotes the total variation
norm of the measure μ. Thus every element of M∗ can be represented as a
measure ν on T which admits a representation ν = gdx + μ, where g ∈ L2(T)
and μ is a Borel measure on T supported on [−π/2, π/2]. The evaluation of ν
at f ∈ M is given by

〈ν, f〉 =
1
2π

∫

T

f(z)g(z)dz +
∫ π/2

−π/2

f(z)dμ(z).
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Clearly ‖ν‖M∗ ≤ max(‖g‖2, |μ|(T)).
For ν ∈ M∗, set ν̂(n) = 〈ν, en〉, n ∈ Z, and define the spectrum of ν to be

the set σ(ν) = {n ∈ Z : ν̂(n) �= 0}. Every g ∈ L2(T) defines an element νg of
M∗ by

〈νg, f〉 =
1
2π

∫

T

f(z)g(z)dz.

The following lemma and Proposition 5.4.11 provide characterisations of spec-
tral sets by means of spectra of elements in M∗.

Lemma 5.4.10. For a subset E of Z, the following conditions are equivalent.

(i) E is a spectral set for M .
(ii) 〈μ, f〉 = 0 for every f ∈ k(E) and every μ ∈ M∗ with σ(μ) ⊆ E.

Proof. (i) ⇒ (ii) Let f ∈ k(E) and μ ∈ M∗ with σ(μ) ⊆ E. Because E is
a spectral set, by Lemma 5.4.5 k(E) is the closed linear span of functions
en, n ∈ Z\E. Thus there exists a sequence (pj)j of trigonometric polynomials
such that pj → f in M . Then, for each j,

pj(t) =
∑

n∈Z\E

p̂j(n)en(t)

and, since σ(μ) ⊆ E,

〈μ, pj〉 =
∑

n∈Z\E

p̂j(n)〈μ, en〉 =
∑

n∈Z\E

p̂j(n)μ̂(n) = 0.

So 〈μ, f〉 = limj→∞〈μ, pj〉 = 0.
(ii) ⇒ (i) Towards a contradiction, assume that j(E) �= k(E). Then there

exists f ∈ k(E) such that δ = inf{‖g − f‖ : g ∈ j(E)} > 0. By the Hahn–
Banach theorem there exists μ ∈ M∗ such that 〈μ, f〉 = δ and μ|j(E) = 0.
By Lemma 5.4.5, j(E) is the linear span of functions en, n ∈ Z \ E. Thus
0 = 〈μ, en〉 = μ̂(n) for each n ∈ Z \ E, whence σ(μ) ⊆ E. By hypothesis (ii),
〈μ, f〉 = 0, which is a contradiction. �	

Proposition 5.4.11. For a subset E of Z the following conditions are equiv-
alent.

(i) E is a spectral for M .
(ii) If μ ∈ M∗ is such that σ(μ) ⊆ E, then μ is the w∗-limit of functionals in

the linear span of all μen , n ∈ E.

Proof. (i) ⇒ (ii) Let μ ∈ M∗ such that σ(μ) ⊆ E. Because E is a spectral
set, Lemma 5.4.10 implies that 〈μ, f〉 = 0 for every f ∈ k(E). Towards a
contradiction, assume that μ does not belong to the w∗-closed subspace F
generated by the μen , n ∈ E. By the Hahn–Banach theorem, there exists
f ∈ M satisfying 〈μ, f〉 �= 0 and 0 = 〈μen , f〉 = ̂f(n) for all n ∈ E. Thus
f ∈ k(E), whereas 〈μ, f〉 �= 0. This contradiction proves (ii).



5.4 Spectral synthesis in the Mirkil algebra 285

(ii) ⇒ (i) By Lemma 5.4.10 we have to show that 〈μ, f〉 = 0 for every
f ∈ k(E) and μ ∈ M∗ with σ(μ) ⊆ E. By hypothesis (ii), it suffices to verify
that 〈ν, f〉 = 0 whenever ν is of the form

ν =
∑

n∈E

αnμen ,

where αn �= 0 for only finitely many n. However, since f ∈ k(E),

〈ν, f〉 =
∑

n∈E

αn〈μen , f〉 =
1
2π

∑

n∈E

αn

∫ π

−π

eintf(t)dt =
∑

n∈E

αn
̂f(n) = 0.

This proves (ii) ⇒ (i). �	

Theorem 5.4.12. Every subset of 4Z is a spectral set for M .

Proof. Let E be a nonempty subset of 4Z and ν = gdx + μ ∈ M∗ with
σ(ν) ⊆ E. Let p be any trigonometric polynomial and let q(t) = p(t + π/2).
Then

q̂(n) = einπ/2

∫ π

−π

p(t)e−intdt = einπ/2 p̂(n)

for all n ∈ Z, and hence q̂(n) = p̂(n) for all n ∈ 4Z. Because ν̂(n) = 0 for all
n �∈ E and E ⊆ 4Z, it follows that

∫ π

−π

q(t)dν(t) =
∑

n∈4Z

q̂(n)ν̂(−n) =
∑

n∈4Z

p̂(n)ν̂(−n) =
∫ π

−π

p(t)dν(t).

The trigonometric polynomials are uniformly dense in C(T). Thus
∫ π

−π

f(t)dν(t) =
∫ π

−π

f(t + π/2)dν(t)

for all f ∈ C(T), and this implies ν(S) = ν(S + π/2) for every Borel subset S
of T. On the other hand, since μ is supported on [−π/2, π/2], it follows that
ν(S) =

∫

S g(x)dx whenever S ⊆ [0, π/2). Combining these two facts we see
that ν ∈ L2(T). Setting

νN =
N
∑

n=−N

ν̂(n)en ∈ L2(T)

for N ∈ N, we deduce that

‖ν − νN‖M∗ ≤ ‖ν − νN‖2 → 0

as N → ∞. Thus ν is contained in the norm closure of the linear subspace of
M∗ spanned by the functions en, n ∈ E. Proposition 5.4.11 now shows that
E is a set of synthesis. �	
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The next two lemmas are straightforward and most likely well-known.
However, we include the proofs for completeness.

Lemma 5.4.13. Let f ∈ M be defined by

f(t) =

{

1 if |t| ≤ π/2,

−1 if π/2 < |t| ≤ π.

Then ̂f(0) = 0 and, for n ∈ Z \ {0},

̂f(n) =
2

nπ
sin

(nπ

2

)

.

In particular, f ∈ k(2Z).

Proof. For n ∈ Z, n �= 0, we have

̂f(n) =
1
2π

(

−
∫ −π/2

−π

e−intdt +
∫ π/2

−π/2

e−intdt −
∫ π

π/2

e−intdt

)

=
1

2πin

(

einπ/2 − einπ − e−inπ/2 + einπ/2 + e−inπ − e−inπ/2
)

=
1

πin

(

einπ/2 − e−inπ/2
)

=
2

nπ
sin

(nπ

2

)

.

It is clear that ̂f(0) = 0. �	
Lemma 5.4.14. Let μ = δ−π/2 + δπ/2 ∈ M∗. Then

μ̂(n) = 2 cos
(nπ

2

)

for every n ∈ Z. In particular, σ(μ) = 2Z.

Proof. For each n ∈ Z,

μ̂(n) =
∫

T

e−intdμ(t) = einπ/2 + e−inπ/2 = 2 cos
(nπ

2

)

.

Since cos(nπ/2) �= 0 if and only if n ∈ 2Z, we get that σ(μ) = 2Z. �	
Corollary 5.4.15. Let f and μ be as in Lemmas 5.4.13 and 5.4.14, respec-
tively. Then 〈μ, f − p ∗ f〉 = 2 for every trigonometric polynomial p.

Proof. Notice first that 〈μ, f〉 = f(−π/2) + f(π/2) = 2. Then

〈μ, f − p ∗ f〉 = 2 − 〈μ, p ∗ f〉 = 2 −
∑

n∈Z

p̂(n) ̂f(n)μ̂(n)

= 2 −
∑

n∈2Z

p̂(n) ̂f(n)μ̂(n) = 2

since σ(μ) = 2Z and f ∈ k(2Z). �	
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Corollary 5.4.16. The union of two disjoint sets of synthesis for M need not
be a set of synthesis. For example, 2Z = 4Z ∪ (4Z + 2) fails to be of synthesis
even though both 4Z and 4Z + 2 are sets of synthesis.

Proof. By Theorem 5.4.12, 4Z is a spectral set and hence so is 4Z + 2 by
Corollary 5.4.7. However, 2Z is not of synthesis. Indeed, let f and μ be as in
Lemmas 5.4.13 and 5.4.14. Then f ∈ k(2Z) and σ(μ) = 2Z and 〈μ, f〉 = 2
(Corollary 5.4.15). Lemma 5.4.10 now implies that 2Z is not of synthesis. �	

Theorem 5.4.17. Let E be a finite subset of Z = Δ(M). Then E is a set of
synthesis, but E fails to be a Ditkin set.

Proof. We first show that E is a set of synthesis. Since the trigonometric
polynomials p are dense in M (Lemma 5.4.2) and p̂ has finite support for any
such p, ∅ is a spectral set. Thus let E be nonempty and let f ∈ k(E) and
μ ∈ M∗ with σ(μ) ⊆ E. To show that 〈μ, f〉 = 0, let ε > 0 be given. There
exists a trigonometric polynomial p =

∑N
n=−N cnen such that ‖f −p‖ ≤ ε. Of

course, we can assume that E ⊆ {−N, . . . , N}. Because σ(μ) ⊆ E, 〈μ, p〉 =
∑

n∈E cn〈μ, en〉. Moreover, for each n ∈ E,

ϕn(p) =
N
∑

j=−N

cjϕn(ej) = cn

and hence, since f ∈ k(E),

|cn| ≤ |ϕn(f)| + |ϕn(p − f)| ≤ ‖p− f‖ ≤ ε.

Denoting by |E| the cardinality of E, it follows that

|〈μ, f〉| ≤ |〈μ, f − p〉| +
∑

n∈E

|cn| · |〈μ, en〉|

≤ ε ‖μ‖(1 + |E| + |E|
√

2π).

Thus 〈μ, f〉 = 0 since ε > 0 was arbitrary.
Turning to the second statement of the theorem, by Theorem 5.4.9(ii) it

suffices to show that ∅ is not a Ditkin set. To that end, let f and μ be as in
Lemmas 5.4.13 and 5.4.14. Then, by Corollary 5.4.15, 〈μ, f − p ∗ f〉 = 2 and
hence ‖f − p ∗ f‖ ≥ 2/‖μ‖ for every trigonometric polynomial p. Using again
that the trigonometric polynomials are dense in M , it follows that f �∈ f ∗ M .
Thus ∅ fails to be a Ditkin set. �	

For group algebras L1(G), where G is a locally compact Abelian group,
it is an open question whether every set of synthesis is a Ditkin set. This
question is open even for the group of integers. In the context of general regular
and semisimple commutative Banach algebras A, Theorem 5.4.17 shows in a
dramatic manner that singletons in Δ(A) which are spectral sets need not be
Ditkin sets.
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5.5 Spectral sets and Ditkin sets for L1(G)

A famous theorem due to Malliavin [84] states that spectral synthesis fails
for any noncompact locally compact Abelian group G; that is, there exists
a closed subset E of ̂G = Δ(L1(G)) with the property that k(E) is not the
only closed ideal with hull equal to E. Therefore, there is profound interest
in producing sets of synthesis as well as Ditkin sets for L1(G). This is the
purpose of this section. Our main tools are results obtained in Sections 5.2
and 4.4.

Theorem 5.5.1. Let G be a locally compact Abelian group.

(i) L1(G) satisfies Ditkin’s condition at infinity.
(ii) Let K be a compact subset of ̂G and ε > 0. Then there exists f ∈ L1(G)

such that ̂f = 1 on K, ̂f has compact support and ‖f‖1 < 1 + ε.

Proof. (i) Because L1(G) has an approximate identity, it suffices to show that
L1(G) is Tauberian. Let F denote the space of all functions f ∈ L2(G) such
that ̂f equals almost everywhere a continuous function with compact support.
By the Plancherel theorem, F is dense in L2(G). Observe that if g, h ∈ F ,
then ĝ ∗ ̂h ∈ Cc( ̂G), gh ∈ L1(G), and the Fourier transform ̂gh of gh equals
ĝ ∗̂h. Indeed, by the Parseval identity (Corollary 4.4.12) and Corollary 4.4.13,

̂gh(α) = 〈αg, h〉 = 〈α̂g, ̂h〉

= 〈Lαĝ, ̂h〉 =
∫

̂G

ĝ(αβ)̂h(β)dβ

= (ĝ ∗ ̂h)(α)

for every α ∈ ̂G (the same argument was used in the proof of Theorem 4.4.14).
Now, every f ∈ L1(G) can be written as a pointwise product f = gh where
g, h ∈ L2(G). Since F is dense in L2(G), it follows that the set {gh : g, h ∈ F}
is dense in L1(G). On the other hand,

{gh : g, h ∈ F} ⊆ {f ∈ L1(G) : ̂f ∈ Cc( ̂G)}.

Thus the set on the right-hand side is dense in L1(G), as required.
(ii) Since L1(G) is regular (Theorem 4.4.14), by Corollary 4.2.10 there

exists g ∈ L1(G) such that ĝ|K = 1 and ĝ has compact support. Now L1(G)
has an approximate identity of norm bound 1. So there exists u ∈ L1(G)
with ‖g − g ∗ u‖1 < ε/3 and ‖u‖1 = 1. As L1(G) is Tauberian, we find
v ∈ L1(G) so that v̂ has compact support and ‖v−u‖1 < ε/3 min{1, 1/‖g‖1}.
Let f = g + v − g ∗ v. Then

‖f‖1 ≤ ‖v‖1 + ‖g − g ∗ v‖1

≤ 1 + ‖v − u‖1 + ‖g − g ∗ u‖1 + ‖g‖1‖v − u‖1

< 1 + ε.

Moreover, ̂f = 1 on K and ̂f has compact support. �	



5.5 Spectral sets and Ditkin sets for L1(G) 289

In the following, if not otherwise stated, G is an arbitrary locally com-
pact Abelian group. Theorem 5.5.1, combined with earlier results, yields
some interesting consequences. Because L1(G) has an approximate identity,
f ∈ f ∗ L1(G) for every f ∈ L1(G). From Theorem 5.5.1 and Lemma 5.1.9 we
conclude the following

Corollary 5.5.2. Every proper closed ideal of L1(G) is contained in some
maximal modular ideal.

Because Δ(L1(G)) = ̂G is discrete when G is compact, Theorem 5.5.1 and
Corollary 5.2.15 imply the following

Corollary 5.5.3. Let G be a compact Abelian group. Then spectral synthesis
holds for L1(G).

Corollary 5.5.4. Let f ∈ L1(G) and let I denote the closed linear subspace
of L1(G) generated by all the translates Lxf, x ∈ G. Then the following con-
ditions are equivalent.

(i) I = L1(G).
(ii ̂f(α) �= 0 for all α ∈ ̂G.

Proof. Suppose that I �= L1(G). Then, by Proposition 1.4.7, I is a proper
closed ideal of L1(G) and hence, by Corollary 5.5.2, there exists a maximal
modular ideal M of L1(G) such that M ⊇ I. By Theorem 2.7.2, M is of the
form

M = {g ∈ L1(G) : ĝ(α) = 0}

for some α ∈ ̂G. Thus ̂f(α) = 0, and this shows that (ii) implies (i).
Conversely, let ̂f(α) = 0 for some α ∈ ̂G and recall that ̂Lxf(α) =

α(x) ̂f(α) for every x ∈ G (Lemma 2.7.3(i)). Since the function g → ĝ(α)
is continuous on L1(G), we conclude that I ⊆ kerϕα. Thus (i) ⇒ (ii). �	

Our next goal is to show that cosets of closed subgroups of ̂G are Ditkin
sets. For that, we need a sequence of preparatory lemmas. For C > 1, let
FC(G) denote the set of all functions f ∈ L1(G) such that ‖f‖1 < C and
̂f(χ) = 1 for all χ in some neighbourhood (depending on f) of the trivial
character 1G in ̂G.

Lemma 5.5.5. For every compact subset K of G and ε > 0, there exists
f ∈ FC(G) such that ‖Lyf − f‖1 < ε for all y ∈ K.

Proof. For a Borel set S in G, let |S| denote the Haar measure of S. Define
an open neighbourhood U of 1G in ̂G by

U = {α ∈ ̂G : |α(x) − 1| < ε/2C for all x ∈ K}.

Choose a compact symmetric neighbourhood V of 1G in ̂G such that V ⊆ U ,
and then choose another such neighbourhood W of 1G such that V W ⊆ U and
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|V W | < C|V |. Note that such a W exists because V is compact, C > 1, and
the Haar measure is regular. Denoting by g → ĝ the Plancherel isomorphism
between L2(G) and L2( ̂G) (Theorem 4.4.10), let u, v ∈ L2(G) be such that
û = 1V and v̂ = 1V W . We claim that the function

f =
1
|V | uv ∈ L1(G)

has all the desired properties. To that end, note first that

‖f‖1 ≤ 1
|V | ‖u‖2‖v‖2 =

1
|V | ‖û‖2‖v̂‖2

=
1
|V | ‖1V ‖2‖1V W ‖2 =

(

|V W |
|V |

)1/2

< C1/2

< C.

Next, observe that ̂f(α) = 1 for all α ∈ W. Indeed, if α ∈ W , then

|V | ̂f(α) =
∫

G

u(x)v(x)α(x)dx = 〈u · α, v 〉

= 〈̂u · α,̂v 〉 =
∫

̂G

û(αγ)v̂(γ−1)dγ

=
∫

̂G

1V (αγ)1V W (γ−1)dγ =
∫

V

1V W (γ−1α)dγ

= |V |.

For each y ∈ G, we have

|V | · ‖Lyf − f‖1 ≤
∫

G

|u(y−1x) − u(x)| · |v(y−1x)|dx

+
∫

G

|u(x)| · |v(y−1x) − v(x)|dx

≤ ‖Lyu − u‖2‖v‖2 + ‖u‖2‖Lyv − v‖2.

Now, let y ∈ K. Then, since V W ⊆ U,

‖Lyv − v‖2
2 =

∫

̂G

|α(y) − 1|2|v̂(α)|2dα

=
∫

V W

|α(y) − 1|2dα

<
( ε

2C

)2

|V W |,

and similarly

‖Lyu − u‖2
2 <

( ε

2C

)2

|V |.
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Combining these inequalities we obtain, for all y ∈ K,

‖Lyf − f‖1 ≤ 1
|V | ·

ε

2C

(

|V |1/2‖v‖2 + ‖u‖2|V W |1/2
)

<
ε

C

(

|V W |
|V |

)1/2

< ε C−1/2

< ε,

because |V W | < C|V | and C > 1. This finishes the proof. �	

Lemma 5.5.6. Given f ∈ L1(G) and ε > 0, there exists g ∈ FC(G) such that

‖f ∗ g − ̂f(1G)g‖1 < ε,

and hence also
‖f ∗ g‖1 < C| ̂f(1G)| + ε.

Proof. For any g ∈ L1(G), we have

‖f ∗ g − ̂f(1G)g‖1 ≤
∫

G

|f(y)| · ‖Lyg − g‖1dy.

Choose a compact subset K of G such that
∫

G\K

|f(y)|dy <
ε

3C
.

For any g ∈ FC(G), since ‖Lyg − g‖1 < 2C, it follows that

‖f ∗ g − ̂f(1G)g‖1 < max
y∈K

‖Lyg − g‖1

∫

K

|f(y)|dy +
2ε

3
.

Now, by Lemma 5.5.5 there exists g ∈ FC(G) such that

‖f‖1 · max
y∈K

‖Lyg − g‖1 <
ε

3
.

For such g, we obtain ‖f ∗ g − ̂f(1G)g‖1 < ε. This in turn implies

‖f ∗ g‖1 < C| ̂f(1G)| + ε,

since ‖g‖1 < C. �	

Let H be a closed subgroup of G. In the remainder of this section,
we always identify Ĝ/H with its annihilator in ̂G, that is, the closed sub-
group of ̂G consisting of all α ∈ ̂G such that α(H) = {1}. Remember
that TH denotes the homomorphism from L1(G) onto L1(G/H) defined by
TH(f)(xH) =

∫

H f(xh)dh for f ∈ L1(G) and almost all x ∈ G.
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Lemma 5.5.7. Let H be a closed subgroup of G and let f ∈ L1(G) and ε > 0.
Then there exists a measure μ ∈ M(G) with the following properties.

(i) ‖μ‖ < 1 + ε and μ̂ = 1 on a neighbourhood of Ĝ/H in ̂G.
(ii) ‖μ ∗ f‖1 < ‖THf‖1 + ε.

Proof. We first establish the lemma for f ∈ Cc(G). Choose C > 1 such that
C < 1 + ε and (C − 1)‖THf‖1 < ε/2. By Lemma 5.5.6 there exists h ∈ L1(H)
such that ‖h‖1 < C, ̂h = 1 in a neighbourhood V of the trivial character in
̂H and

∫

G

∣

∣

∣

∣

∫

H

f(xt)h(t−1)dt

∣

∣

∣

∣

dx < C‖THf‖1 + ε/2 < ‖THf‖1 + ε.

Let μ = μh ∈ M(G). Then ‖μ‖ =
∫

H |h(t)|dt < 1 + ε and

‖μ ∗ f‖1 =
∫

G

∣

∣

∣

∣

∫

G

f(xy−1)dμ(y)
∣

∣

∣

∣

dx =
∫

G

∣

∣

∣

∣

∫

H

f(xt−1)h(t)dt

∣

∣

∣

∣

dx

=
∫

G

∣

∣

∣

∣

∫

H

f(xt)h(t−1)dt

∣

∣

∣

∣

dx

< ‖THf‖1 + ε.

Moreover, for each γ ∈ ̂G,

μ̂(γ) =
∫

H

γ(t)h(t)dt = ̂h(γ|H).

Thus μ̂ = 1 on the open neighbourhood {α ∈ ̂G : α|H ∈ V } of Ĝ/H in ̂G.
Let now f be an arbitrary element of L1(G) and select g ∈ Cc(G) such

that ‖g−f‖1 < ε/(4+2ε). By the first part of the proof there exists a measure
μ satisfying (i) and ‖μ ∗ g‖1 < ‖THg‖1 + ε/2. Then

‖μ ∗ f‖1 ≤ ‖μ ∗ g‖1 + ‖μ ∗ (f − g)‖1

< ‖THg‖1 + ‖μ‖ · ‖f − g‖1 +
ε

2
≤ ‖THf‖1 + (1 + ‖μ‖)‖f − g‖1 +

ε

2
≤ ‖THf‖1 + (2 + ε)‖f − g‖1 +

ε

2
< ‖THf‖1 + ε.

This finishes the proof of the lemma. �	

We are now in a position to prove that cosets of closed subgroups in ̂G are
Ditkin sets. Actually, a stronger result is shown.

In passing, we make the simple observation that if E is a closed subset
of ̂G and α ∈ ̂G, then E is a spectral set (respectively, Ditkin set) if and
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only if αE is a spectral set (respectively, Ditkin set). This follows readily
from the two facts that for f, g ∈ L1(G) and γ ∈ ̂G, ̂f(αγ) = ̂αf(γ) and
γ(f ∗ g) = (γf) ∗ (γg).

Theorem 5.5.8. Let G be a locally compact Abelian group, Γ a closed sub-
group of ̂G, and α ∈ ̂G. For every δ > 0, k(αΓ ) possesses an approximate
identity of norm bound 2 + δ which is contained in j(αΓ ). In particular, αΓ
is a Ditkin set for L1(G).

Proof. By the remark preceding the theorem, we can assume that α = 1G. The
closed subgroup Γ of ̂G is of the form Γ = Ĝ/H, where H is the annihilator
of Γ in ̂G; that is, H = {x ∈ G : γ(x) = 1 for all γ ∈ Γ} (Corollary A.5.3).
Let f ∈ L1(G) be such that ̂f vanishes on Γ . Then

̂THf(γ) =
∫

G/H

γ(xH)
(∫

H

f(xh)dh

)

d(xH) =
∫

G

f(x)γ(x)dx = 0

for all γ ∈ Γ , whence THf = 0.
Given ε > 0, we find u ∈ L1(G) such that ‖u‖ ≤ 1, û has compact support

and ‖f − u ∗ f‖1 < ε. Because TH(u ∗ f) = THu ∗ THf = 0, by Lemma 5.5.7
there exists μ ∈ M(G) such that μ̂ = 1 in a neighbourhood of Γ , ‖μ‖ ≤ 1 + δ
and ‖μ ∗ u ∗ f‖1 < ε. Then

‖f − (u − μ ∗ u) ∗ f‖1 < 2ε,

and the Fourier transform of μ ∗ u− u vanishes on a neighbourhood of Γ . Let
g = μ ∗ u − u. Then g ∈ j(Γ ) and

‖g‖1 ≤ ‖u‖1(‖μ‖ + 1) < 2 + δ.

This proves the theorem. �	

From Theorem 5.5.8, Lemma 5.5.7, and Theorem 5.2.6 we can now derive
the injection theorem for spectral sets and Ditkin sets for L1-algebras.

Theorem 5.5.9. Let G be a locally compact Abelian group, H a closed sub-
group of G, and embed Ĝ/H into ̂G. Let E be a closed subset of Ĝ/H.

(i) E is a set of synthesis for L1(G/H) if and only if E is a set of synthesis
for L1(G).

(ii) E is a Ditkin set for L1(G/H) if and only if E is a Ditkin set for L1(G).

Proof. It follows from Theorem 5.2.6(i) that if E is a set of synthesis (respec-
tively, Ditkin set) for L1(G), then E is a set of synthesis (respectively, Ditkin
set) for L1(G/H) = L1(G)/ kerTH . Moreover, the converse conclusion of (i)
follows from part (ii) of Theorem 5.2.6 because h(kerTH) = Ĝ/H is a Ditkin
set by Theorem 5.5.8.
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Finally, suppose that E is a Ditkin set for L1(G/H). Since Ĝ/H is a Ditkin
set for L1(G) (Theorem 5.5.8) and L1(G) satisfies Ditkin’s condition at infinity
(Theorem 5.5.1), it follows from Theorem 5.2.6(iii) that E is a Ditkin set for
L1(G) provided that there exists a constant C > 1 with the following property.
For every f ∈ L1(G) and ε > 0, there exists g ∈ L1(G) such that ĝ vanishes
in a neighbourhood of Ĝ/H in ̂G and ‖f − f ∗ g‖ ≤ C‖TH(f)‖1 + ε.

In the situation at hand, we can simply take any C > 1. In fact, this can
be seen as follows. By Lemma 5.5.7 there exists μ ∈ M(G) such that μ̂ = 1
in a neighbourhhod of Ĝ/H in ̂G and

‖μ ∗ f‖1 < C ‖TH(f)‖1 + ε.

Choose 0 < δ < C‖TH(f)‖1 + ε− ‖μ ∗ f‖1. Then there exists u ∈ L1(G) with
‖u‖1 ≤ 1 and ‖f − f ∗ u‖1 < δ. Let g = u − μ ∗ u ∈ L1(G). Then

‖f − f ∗ g‖1 ≤ ‖f − f ∗ u‖1 + ‖μ ∗ f ∗ u‖1

< δ + ‖μ ∗ f‖1

< C ‖TH(f)‖1 + ε,

as required. �	

Corollary 5.5.10. Let Γ1, . . . , Γm be closed subgroups of ̂G and let γ1, . . . , γm

be characters of G. For each j = 1, . . . , m, let mj ∈ N0 and for 1 ≤ k ≤ mj,
let Δjk be an open subgroup of Γj and δjk ∈ ̂G. Then the subset

E =
m
⋃

j=1

γj (Γj \ δjkΔjk)

of ̂G is a Ditkin set for L1(G).

Proof. Finite unions of Ditkin sets are Ditkin sets (Lemma 5.2.1). Therefore
we can assume that m = 1. Moreover, if F is a Ditkin set then so is γF
for every γ ∈ ̂G. Thus we can further assume that E is of the form E =
Γ \

⋃n
k=1 δkΔk, where Γ is a closed subgroup of ̂G and for each k = 1, . . . , n,

Δk is an open subgroup of Γ and δk ∈ ̂G. Then E is open and closed in
Γ . Let H be the annihilator of Γ in G, so that Γ = Ĝ/H . Since L1(G/H)
satisfies Ditkin’s condition at infinity, the open and closed subset E of Ĝ/H is
a Ditkin set for L1(G/H) (Proposition 5.2.14). Then assertion (ii) of Theorem
5.5.9 shows that E is a Ditkin set for L1(G).

Subsets E of ̂G of the form in Corollary 5.5.10 play a vital role in Section
5.6 in that the ideals k(E), for such E, will turn out to be precisely the closed
ideals of L1(G) with bounded approximate identities.
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5.6 Ideals with bounded approximate identities in L1(G)

Let G be a locally compact Abelian group. In this section we take up the study
of closed ideals in L1(G) with bounded approximate identities. We start with
the simple observation that if μ is an idempotent measure in M(G) (that is,
μ∗μ = μ), then μ∗L1(G) is a closed ideal with bounded approximate identity.
Indeed, μ ∗ L1(G) is closed in L1(G) since μ ∗ fn → g in L1(G) implies that
μ∗g = g. Moreover, if (uα)α is a bounded approximate identity in L1(G), then
(μ ∗ uα)α is one in μ ∗ L1(G). We show that, when G is compact, conversely
every closed ideal with bounded approximate identity is of this form. In the
general case such ideals turn out to give rise to idempotent measures on the
Bohr compactification b(G) of G which we have introduced and investigated
in Section 2.10. We remind the reader that b(G) is a compact Abelian group
and, by Corollary 2.10.14, the discrete group ̂b(G) is isomorphic to ̂Gd, the
dual group ̂G of G with the discrete topology. This isomorphism is given by
γ → γ̂, where γ̂(ϕx) = γ(x) for γ ∈ ̂G and x ∈ G.

Proposition 5.6.1. Let G be a locally compact Abelian group and b(G) the
Bohr compactification of G. Let I be a closed ideal of L1(G) with bounded
approximate identity. Then there exists an idempotent measure μ ∈ M1(b(G))
such that μ̂ coincides with the characteristic function of ̂Gd \ h(I).

Proof. By assumption, I has an approximate identity of norm bound c > 0,
say. Thus, given any f ∈ I and ε > 0, there exists u ∈ I such that ‖u‖1 ≤ c
and ‖u ∗ f − f‖1 < ε.

If F is any finite subset of ̂G \ h(I), then there exists f ∈ I such that
̂f(γ) = 1 for all γ ∈ F . In fact, this is a consequence of Theorem 4.2.8 and
regularity of L1(G) (Theorem 4.4.14). For u as above and all γ ∈ F , it follows
that

|û(γ) − 1| = |û ∗ f(γ) − ̂f(γ)| ≤ ‖u ∗ f − f‖1 < ε.

Now, let

A(F, ε) = {u ∈ I : ‖u‖1 ≤ c, |û(γ) − 1| < ε for all γ ∈ F}.

By the preceding, A(F, ε) is nonempty for every finite subset F of ̂G \ h(I)
and ε > 0. We embed A(F, ε) into M1(b(G)) ⊆ C(b(G))∗ = AP (G)∗ (compare
Section 2.10) by making correspond the measure u(x)dx to the function u.
Thus, for any g ∈ AP (G),

〈u, g〉 =
∫

G

g(x)u(x)dx.

This embedding is isometric; that is, for all u ∈ L1(G) we have

‖u‖1 = sup{|〈u, g〉| : g ∈ AP (G), ‖g‖∞ ≤ 1}.
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To verify this, it is sufficient to consider u ∈ Cc(G) and to show that given any
δ > 0, there exists g ∈ AP (G) such that ‖g‖∞ = 1 and ‖u‖1 ≤ |〈u, g〉| + 2δ.
For that, let

Cδ = {x ∈ G : |u(x)| ≥ δ/mG(supp u)},
where mG denotes the Haar measure of G, and let uδ = u · 1Cδ

. Then ‖u −
uδ‖1 ≤ δ. Since Cδ is compact, the injective continuous homomorphism φ
from G into b(G) maps Cδ homeomorphically onto the closed subset φ(Cδ) of
b(G). Thus the assignment φ(x) → |u(x)|/u(x), x ∈ Cδ, defines a continuous
function of absolute value one on φ(Cδ). Extending this function to a norm one
function in C(b(G)), we see that there exists g ∈ AP (G) such that ‖g‖∞ = 1
and g(x) = |u(x)|/u(x) for all x ∈ Cδ. It follows that

‖u‖1 − δ ≤
∫

Cδ

|u(x)|dx =
∫

Cδ

u(x)g(x)dx

≤ |〈uδ, g〉 − 〈u, g〉| + |〈u, g〉|
≤ ‖uδ − u‖1 · ‖g‖∞ + |〈u, g〉|

and hence ‖u‖1 ≤ |〈u, g〉| + 2δ.
Let B(F, ε) denote the closure of A(F, ε) in M(b(G)) in the w∗-topology

σ(M(b(G)), C(b(G))). By continuity (in this topology), every μ ∈ B(F, ε)
satisfies |μ̂(γ)−1| ≤ ε for all γ ∈ F. Moreover, since A(F, ε) ⊆ I, by continuity
again, μ̂(γ) = 0 for all γ ∈ h(I). The set B(F, ε) is compact in the topology
σ(M(b(G)), C(b(G))). In fact, B(F, ε) is a closed subset of the compact ball
of radius c around the origin in M(b(G)). Now, the family

{A(F, ε) : F ⊆ ̂G \ h(I) finite,ε > 0}

obviously has the finite intersection property. Thus the family of all sets
B(F, ε) also has the finite intersection property. It follows that the set

⋂

{B(F, ε) : F ⊆ ̂G \ h(I) finite, ε > 0}

is nonempty. Now any measure μ on b(G) which belongs to all of the sets
B(F, ε) has the property that μ̂(γ) = 0 for all γ ∈ h(I) and μ̂(γ) = 1 for all
γ ∈ ̂G \ h(I). In particular, μ is an idempotent.

Corollary 5.6.2. Let G be a compact Abelian group and I a closed ideal of
L1(G). Then I has a bounded approximate identity if and only if I = μ∗L1(G)
for some idempotent measure μ ∈ M(G).

Proof. Let I have a bounded approximate identity. Then, by Proposition 5.6.1,
there exists an idempotent measure μ on b(G) = G such that μ̂ equals the
characteristic function of ̂G \ h(I). Now,

h(μ ∗ L1(G)) = {α ∈ ̂G : μ̂(α) = 0} = h(I).
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Because G is compact, every subset of ̂G is a set of synthesis for L1(G) (Corol-
lary 5.5.2). It follows that I = μ ∗ L1(G).

As pointed out at the outset of this section, the converse is true for arbi-
trary locally compact Abelian groups.

According to Proposition 5.6.1 the description of the hull of ideals with
bounded approximate identities in L1(G) is related to the description of the
sets S(μ) = {γ ∈ ̂Gd : μ̂(γ) �= 0} associated to idempotent measures μ on the
compact group b(G). We therefore proceed to study idempotent measures on
groups.

Let G be a locally compact Abelian group. For μ ∈ M(G) and f ∈ Cb(G),
the measure f · μ is defined by 〈f · μ, g〉 = 〈μ, fg〉, g ∈ C0(G). Let H be a
compact subgroup of G and denote by mH the normalized Haar measure of
H , considered as a measure on G. If γ is a character of G, then γ · mH is
an idempotent measure and γ̂ · mH equals the characteristic function of the
subset γ · Ĝ/H of ̂G. Indeed, for each α ∈ ̂G,

γ̂ · mH(α) =
∫

G

α(x)γ(x)dmH(x) =
∫

H

α(h)γ(h)dmH(h),

which, by the orthogonality relations, equals one if α|H = γ|H and is zero
whenever α|H �= γ|H .

The most decisive result in this context is Cohen’s idempotent theorem
(Theorem 5.6.6) which states that any idempotent in M(G) is a finite linear
combination with integer coefficients of such measures γ · mH . To approach
Cohen’s idempotent theorem, it turns out to be useful to consider, more gen-
erally, the set

F (G) = {μ ∈ M(G) : μ̂ is integer valued}.

Then F (G) contains the idempotents and is closed under addition and con-
volution and also under multiplication by characters. For μ ∈ F (G), the
range of μ̂ is finite. Moreover, note that if μ1, μ2 ∈ F (G) and μ1 �= μ2,
then ‖μ1 − μ2‖ ≥ ‖μ̂1 − μ̂2‖∞ ≥ 1.

The following proposition reduces the study of measures in F (G) to com-
pact groups G.

Proposition 5.6.3. If μ ∈ F (G), then the support group of μ, the smallest
closed subgroup of G whose complement is a μ-null set, is compact.

Proof. Assume that μ �= 0 and let H be the support group of μ. Then μ can
be regarded as an element of F (H). We show that ̂H is discrete and hence H
is compact.

Let γ be any nontrivial character of H . We claim that γ · μ �= μ. Assume
that γ ·μ = μ and let L = {h ∈ H : γ(h) = 1}. Then L is a proper subgroup of
H since γ �= 1H . The uniqueness theorem for the Fourier–Stieltjes transform
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implies that γ(x) = 1 |μ|-almost everywhere. It follows that suppμ ⊆ L,
which contradicts L �= H . Thus γ · μ �= μ and hence ‖γ · μ − μ‖ ≥ 1. Choose
a compact subset C of H such that |μ|(H \ C) < 1/4, and define an open
neighbourhood of 1H by

V =
{

γ ∈ ̂H : |γ(x) − 1| <
1

3‖μ‖ for all x ∈ C

}

.

Then, for γ ∈ V,

‖γ · μ − μ‖ ≤
∫

H

|γ(x) − 1|d|μ|(x)

=
∫

C

|γ(x) − 1|d|μ|(x) +
∫

H\C

|γ(x) − 1|d|μ|(x)

≤ 1
3

+ 2|μ(H \ C)| < 1.

It follows that V consists only of the trivial character of H . So ̂H is discrete,
and hence H is compact (Remark 4.4.15). �	

Lemma 5.6.4. Let G be a compact Abelian group and let μ ∈ F (G), μ �= 0.
Let M be a subset of M(G) such that every measure in M is of the form γ ·μ
for some γ ∈ ̂G. If ν is an accumulation point of M in the w∗-topology on
M(G), then

‖ν‖ ≤ ‖μ‖ − 1
16‖μ‖ .

Proof. Assuming that ν �= 0, we have 0 < ‖ν‖ ≤ ‖μ‖ since ‖γ · μ‖ = ‖μ‖
and the ball of radius ‖μ‖ in M(G) is w∗-closed. Fix any c > 0 such that
c < ‖ν‖/‖μ‖. Then there exist f ∈ C(G) with ‖f‖∞ ≤ 1 and

∫

G f(x)dν(x) >
c‖μ‖, and hence the set

V =
{

λ ∈ M(G) : Re
(∫

G

f(x)dλ(x)
)

> c ‖μ‖
}

is a w∗-open neighbourhood of ν in M(G). Since ν is an accumulation point
of M , there are γ1, γ2 ∈ ̂G such that γ1 · μ �= γ2 · μ and γ1 · μ, γ2 · μ ∈ M ∩ V .
Let

mj = Re
(∫

G

f(x)γj(x)dμ(x)
)

, j = 1, 2,

and dμ = θd|μ|, where θ is a measurable function of absolute value one. Write
(fγjθ)(x) = gj(x) + ihj(x), j = 1, 2, where gj and hj are real-valued. Then,
since ‖fγjθ‖∞ ≤ 1,

‖μ‖2 ≥
∣

∣

∣

∣

∫

G

(gj + i|hj |)(x)d|μ|(x)
∣

∣

∣

∣

2
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=
(∫

G

gj(x)d|μ|(x)
)2

+
(∫

G

|hj(x)|d|μ|(x)
)2

= m2
j +

(∫

G

|hj(x)|d|μ|(x)
)2

and hence
∫

G

|hj(x)|d|μ|(x) ≤
(

‖μ‖2 − m2
j

)1/2

for j = 1, 2. Now, for j = 1, 2, mj > c ‖μ‖ since γj · μ ∈ V , and hence
∫

G

|1 − fγjθ(x)|d|μ|(x) ≤
∫

G

(1 − gj(x))d|μ|(x) +
∫

G

|hj(x)|d|μ|(x)

≤ ‖μ‖ − mj +
(

‖μ‖2 − m2
j

)1/2

≤ ‖μ‖
(

1 − c + (1 − c2
)1/2

).

Since γ1 · μ �= γ2 · μ and μ̂ is integer-valued, we get

1 ≤ ‖γ1 · μ − γ2 · μ‖ ≤
∫

G

|γ1(x) − γ2(x)|d|μ|(x)

≤
∫

G

(

|γ1(x) − (γ1γ2fθ)(x)| + |(γ1γ2fθ)(x) − γ2(x)|
)

d|μ|(x)

≤ 2‖μ‖
(

1 − c + (1 − c2)1/2
)

.

This inequality implies

1
4‖μ‖2

≤
(

(1 − c) + (1 − c2)1/2
)2

= 2(1 − c)
(

1 + (1 − c2)1/2
)

< 4(1 − c),

and hence
c < 1 − 1

16‖μ‖2
.

This holds for all 0 < c < ‖ν‖/‖μ‖. Thus we finally obtain that

‖ν‖ ≤ ‖μ‖ − 1
16‖μ‖ ,

as was to be shown. �	

Definition 5.6.5. A measure μ ∈ M(G) is said to be canonical if μ is of the
form

μ =
m
∑

j=1

nj(γj · mH),
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where H is a compact subgroup of G, n1, . . . , nm are integers, and γ1, . . . , γm

are characters of G.
Two measures μ and ν in M(G) are called mutually singular if they are

concentrated on disjoint sets (we then write μ ⊥ ν). In that case, ‖μ + ν‖ =
‖μ‖ + ‖ν‖.

With Lemma 5.6.4 at our disposal, we can now prove Cohen’s theorem.
We remind the reader that assuming G to be compact is no restriction since
the support group of any μ ∈ F (G) is compact by Proposition 5.6.3.

Theorem 5.6.6. Let G be a compact Abelian group. Then each μ ∈ F (G) is
a finite sum of mutually singular canonical measures.

Proof. Let 0 �= μ ∈ F (G) and set

M =
{

γ · μ : γ ∈ ̂G,

∫

G

γ(x)dμ(x) �= 0
}

.

Let M denote the w∗-closure of M in M(G). Then 0 �∈ M , because

|〈γ · μ, 1G〉| =
∣

∣

∣

∣

∫

G

γ(x)dμ(x)
∣

∣

∣

∣

≥ 1

for all γ · μ ∈ M since μ̂ is integer-valued. Let δ = inf{‖λ‖ : λ ∈ M}. Then
the sets

{λ ∈ M : ‖λ‖ ≤ δ +
1
n
},

n ∈ N, are all nonempty and w∗-compact. It follows that there exists ν ∈ M
such that ‖ν‖ = δ. In particular, δ > 0 since 0 �∈ M . Let

N =
{

γ · ν : γ ∈ ̂G,

∫

G

γ(x)dν(x) �= 0
}

.

Then N is contained in M . Indeed, if γ · ν ∈ N and (γα)α is a net in ̂G
such that γα · μ → ν, then (γγα) · μ → γ · ν in the w∗-topology, and since
∫

G
γ(x)dν(x) �= 0, we have 〈(γγα)·μ, 1G〉 �= 0 and hence γα ·μ ∈ M eventually.

Consequently, ν ∈ M . But now N must be finite, because otherwise N has a
w∗-accumulation point σ, and then ‖σ‖ < ‖ν‖ by Lemma 5.6.4 and σ ∈ M,
contradicting the fact that ν is an element of M with minimal norm.

We now construct the support group of ν. Let

Γ =
{

γ ∈ ̂G :
∫

G

γ(x)dν(x) �= 0
}

,

and define an equivalence relation on Γ by γ1 ∼ γ2 if and only if γ1 · ν =
γ2 ·ν. Because N is finite, Γ consists of only finitely many equivalence classes,
Γ1, . . . , Γm say. For 1 ≤ i ≤ m, let
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Hi = {x ∈ G : γ(x) = γ′(x) for all γ, γ′ ∈ Γi}.

Then Hi is a closed subgroup of G. We show next that |ν|(G \Hi) = 0. Since

Hi = {x ∈ G : (δ−1γ)(x) = 1 for all γ, δ ∈ Γi},

Ĝ/Hi is the subgroup of ̂G generated by all these elements δ−1γ, γ, δ ∈ Γi.

Thus, if λ ∈ Ĝ/Hi and hence λ =
∏r

l=1 δ−1
l γl with γl, δl ∈ Γi and α is an

arbitrary element of ̂G, then by definition of Γi,

ν̂(αλ) =
∫

G

α(x)
r
∏

l=1

(δ−1
l γl)(x)dν(x)

=
∫

G

α(x)
r−1
∏

l=1

(δ−1
l γl)(x)d((δ−1

r γr) · ν)(x)

=
∫

G

α(x)
r−1
∏

l=1

(δ−1
l γl)(x)dν(x)

= . . . =
∫

G

α(x)dν(x)

= ν̂(α).

Thus, for every λ ∈ Ĝ/Hi, the Fourier–Stieltjes transform of (1G − λ) · ν

vanishes on all of ̂G. This implies that |ν|(G \ Hi) = 0, 1 ≤ i ≤ m. Now, let
H =

⋂m
i=1 Hi. It follows that |ν|(G \ H) = 0.

We claim that ν has only a finite number of nonzero Fourier coefficients on
H . For that, observe that Γ |H is finite since Γ =

⋃m
i=1 Γi and Γi ⊆ γi ·Ĝ/Hi ⊆

γi · Ĝ/H for every γi ∈ Γi. Now, if χ ∈ ̂H is such that
∫

H
χ(x)dν(x) �= 0, then

χ is the restriction to H of some γ ∈ Γ since |ν|(G \ H) = 0. This proves the
claim. It follows that ν is a finite sum

ν =
m
∑

i=1

ni(χi · mH) =
m
∑

i=1

ni(γi · mH),

where ni ∈ Z and γi ∈ Γi, i = 1, . . . , m.
To prove that μ is a finite sum of mutually singular canonical measures,

we distinguish two cases. First, if ν is not an accumulation point of M , then
ν = γ · μ for some γ ∈ ̂G, so μ = γ · ν is canonical. Thus we can assume that
ν is an accumulation point of M . Because ν is absolutely continuous with
respect to mH , it follows that ν = γ · μ|H for some γ ∈ ̂G. Let μ1 = γ · ν.
Then μ = μ1 + (μ − μ1) and μ1 ⊥ (μ − μ1) since μ1 = μ|H . Thus

‖μ‖ = ‖μ1‖ + ‖μ − μ1‖ ≥ 1 + ‖μ − μ1‖,

so ‖μ− μ1‖ ≤ ‖μ‖ − 1. Since μ − μ1 ∈ F (G), the same argument can now be
applied to μ − μ1, and so on. Because the norm is decreased by at least one
at each step, this process must stop after a finite number of steps. �	
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In order to describe the support set S(μ) of μ ∈ F (G) in the most conve-
nient manner, we have to introduce the coset ring of an Abelian group.

Definition 5.6.7. The coset ring of an Abelian group G, denoted R(G), is the
smallest Boolean algebra of subsets of G containing the cosets of all subgroups
of G. That is, R(G) is the smallest family of subsets of G which contains all
the cosets of subgroups of G and which is closed under forming finite unions,
finite intersections, and complements.

Let G be a topological Abelian group. The closed coset ring of G, Rc(G),
is defined to be

Rc(G) = {E ∈ R(G) : E is closed in G}.

The following proposition is a first indication of the importance of the
coset ring in our context.

Proposition 5.6.8. Let G be a compact Abelian group and μ ∈ F (G). Then
the set

S(μ) = {α ∈ ̂G : μ̂(α) �= 0}
belongs to R( ̂G).

Proof. For k ∈ Z
∗ = Z\ {0}, let S(μ)k = {α ∈ ̂G : μ̂(α) = k}. Since the range

of μ̂ is finite, it suffices to show that S(μ)k ∈ R( ̂G) for each k.
Assume first that μ is a canonical measure. Thus μ is of the form μ =

∑n
j=1 nj(γj · mH), where H is a closed subgroup of G, the nj are nonzero

integers, and the γj are characters of G such that γj |H �= γi|H for j �= i. Then

μ̂(α) =
n
∑

j=1

nj ̂γj · mH(α) =
n
∑

j=1

nj

∫

H

γj(h)α(h)dh.

The orthogonality relations for characters of H now imply that S(μ)nj =

γj · Ĝ/H ∈ R( ̂G) and S(μ)k = ∅ if k �= nj for all j = 1, . . . , n.
Now, by Theorem 5.6.6, an arbitrary μ ∈ F (G) can be represented as a

finite sum of (mutually singular) canonical measures. To establish the state-
ment of the proposition for μ, we can therefore proceed by induction on the
number of summands in such a sum. For that, it is enough to show that if
μ1, μ2 ∈ F (G) are such that S(μj)k ∈ R( ̂G) for all k ∈ Z∗ and j = 1, 2, then
S(μ1 + μ2)k ∈ R( ̂G) for each k ∈ Z∗. However, S(μ1 + μ2)k is the union of
the three sets

(

S(μ1)k \
⋃

l∈Z∗, l �=k

S(μ2)l

)

,

(

S(μ2)k \
⋃

l∈Z∗, l �=k

S(μ1)l

)

and
⋃

l∈Z∗, l �=k

(

S(μ1)l

⋂

S(μ2)k−l

)

,

and this shows S(μ1 + μ2)k ∈ R( ̂G). �	
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We proceed with a characterisation of the sets in the coset ring R(G). The
proof of the following proposition is postponed to the Appendix (Proposition
A.6.1).

Proposition 5.6.9. Let G be an Abelian group. A subset E of G belongs to
R(G) if and only if E is of the form

E =
n
⋃

i=1

(

Ci \
ni
⋃

j=1

Cij

)

, n, ni ∈ N,

where Ci and Cij are (possibly void) cosets of subgroups of G.

Remark 5.6.10. Let H and K be subgroups of G and a, b ∈ G such that
aH ∩ bK �= ∅. Then there exists h ∈ H such that

aH \ bK = ah(H \ (H ∩ K)),

and H ∩K has infinite index in H whenever aH \ bK is infinite. Thus Propo-
sition 5.6.9 can be reformulated as follows. A subset E of G belongs to R(G)
if and only if E can be written as

E = F ∪
m
⋃

i=1

(

aiHi \
mi
⋃

j=1

bijKij

)

,

where F is finite, Hi is a subgroup of G, and Kij is a subgroup of infinite
index in Hi, 1 ≤ i ≤ m, 1 ≤ j ≤ mi.

If G is a compact Abelian group, Propositions 5.6.9 and 5.6.1 combined
with results obtained in Sections 5.5 and 1.4 already allow a description in
terms of the coset ring ̂G of those closed ideals in L1(G) which possess bounded
approximate identities. When G is noncompact, however, one needs to identify
the closed subsets of R( ̂G). This is fairly difficult. The result is the following
theorem the proof of which is also given in the Appendix (Theorem A.6.8).

Theorem 5.6.11. Let G be an Abelian topological group and E ∈ R(G). Then
E ∈ R(G), and E is closed if and only if E can be written as

E =
m
⋃

j=1

(

Cj \
mj
⋃

l=1

Cjl

)

,

where Cj and Cjl are (possibly void) closed cosets in G and Cjl is contained
in Cj and open in Cj .

Theorem 5.6.11 is the main tool to establish the following description of
closed ideals in L1(G) with bounded approximate identities. Using Theorem
5.6.12, an alternative description can be given in terms of idempotent mea-
sures on quotient groups G/H and the pullbacks to L1(G) of the associated
ideals in L1(G/H) (Exercise 5.8.32).



304 5 Spectral Synthesis and Ideal Theory

Theorem 5.6.12. Let G be a locally compact Abelian group and I a closed
ideal of L1(G). Then I has a bounded approximate identity if and only if
I = k(E) for some E ∈ Rc( ̂G); that is, a set E of the form

E =
m
⋃

j=1

γj

(

Γj \
mj
⋃

k=1

δjkΔjk

)

,

where Γj is a closed subgroup of ̂G, Δjk is an open subgroup of Γj, and γj and
δjk are characters of G (1 ≤ j ≤ m, 1 ≤ k ≤ mj).

Proof. Suppose first that I has a bounded approximate identity. By Propo-
sition 5.6.1, h(I) ∈ R( ̂G). Since h(I) is closed in ̂G, by Theorem 5.6.11,
h(I) = E where E is of the stated form. Moreover, by Corollary 5.5.10, E is
a Ditkin set and hence a spectral set. Thus I = k(E).

Conversely, assume that E is as in the theorem and let

Ej = Γj \
mj
⋃

k=1

δjkΔjk, 1 ≤ j ≤ m.

Then k(E) =
⋂m

j=1 k(γjEj) and by Lemma 1.4.9 it suffices to show that
each k(γjEj) has a bounded approximate identity. Thus we can assume that
E = γF with F = Γ \

⋃n
l=1 δlΔl, where Γ is a closed subgroup of ̂G, Δl is

an open subgroup of Γ , and δl ∈ ̂G, 1 ≤ l ≤ n. Since α(g ∗ f) = (αg) ∗ (αf)
for f, g ∈ L1(G) and α ∈ ̂G and k(γF ) = {γf : f ∈ k(F )}, the ideal k(γF )
has a bounded approximate identity precisely when k(F ) does so. Since F is
a spectral set and h(

∑n
l=1 k(Γ \ δlΔl)) = F , it follows that

k(F ) = k

(

n
⋂

l=1

(Γ \ δlΔl)

)

=
n
∑

l=1

k(Γ \ δlΔl).

Thus, by Lemma 1.4.9, k(F ) has a bounded approximate identity whenever
each ideal of the form k(Γ \ δΔ), where Δ is an open subgroup of Γ and
δ ∈ ̂G, has a bounded approximate identity. Now, either Γ \ δΔ = Γ or δ ∈ Γ
and then Γ \ δΔ = δ(Γ \ Δ). Therefore it remains to observe that both k(Γ )
and k(Γ \Δ) have bounded approximate identities. For k(Γ ) this follows from
Theorem 5.5.8. In the second case, Γ = Ĝ/H and Δ = Ĝ/K where H and K
are closed subgroups of G such that H ⊆ K and K/H is compact since Δ is
open in Γ . With mK/H denoting the normalized Haar measure of K/H , we
have

k(Γ \ Δ)/k(Γ ) = (δeH − mK/H) ∗ L1(G/H),

and the ideal on the right has a bounded approximate identity. Since k(Γ ) has
a bounded approximate identity, it follows that k(Γ \ Δ) also has a bounded
approximate identity (Lemma 1.4.8). �	
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5.7 On spectral synthesis in projective tensor products

The question of how spectral synthesis of the projective tensor product A ̂⊗πB
of two commutative Banach algebras A and B is related to spectral synthesis
of A and B, appears to be quite delicate. Although it is not difficult to see that
if spectral synthesis holds for A ̂⊗πB, then it holds for A and B (Theorem
5.7.2), the converse problem, however, is far from being settled. In this section
we present those results we are aware of in this context.

Recall that given ψ ∈ Δ(B), there exists a unique continuous homomor-
phism φψ : A ̂⊗πB → A such that φψ(a ⊗ b) = ψ(b)a for all a ∈ A and b ∈ B
(Lemma 2.11.5).

Lemma 5.7.1. Let E and F be closed subsets of Δ(A) and Δ(B), respectively,
and let ψ ∈ F. Then

φψ(j(E × F )) ⊆ j(E).

Proof. Let x ∈ j(E × F ). There exists a compact subset C of Δ(A ̂⊗B) =
Δ(A) × Δ(B) such that x̂ = 0 outside of C and C ∩ (E × F ) = ∅. Now,

supp φ̂ψ(x) ⊆ {ϕ ∈ Δ(A) : ϕ ⊗ ψ ∈ C}.

This implies that E ∩ supp φ̂ψ(x) = ∅ since C ∩ (E × F ) = ∅. So φ̂ψ(x) has
compact support disjoint from E. �	

Theorem 5.7.2. Let A and B be regular commutative Banach algebras and
suppose that A ̂⊗πB is semisimple. Let E and F be closed subsets of Δ(A) and
Δ(B), respectively. If E×F is a set of synthesis (Ditkin set) for A ̂⊗πB, then
E is a set of synthesis (Ditkin set) for A, and likewise for F . In particular,
if spectral synthesis holds for A ̂⊗πB, then it holds for both A and B.

Proof. Let a ∈ A and ε > 0 be given. Choose ψ ∈ F and b ∈ B such that
ψ(b) = 1. If E × F is a set of synthesis, there exists x ∈ j(E × F ) such that
‖x − a ⊗ b‖ ≤ ε. Then φψ(x) ∈ j(E) by Lemma 5.7.1 and

‖a − φψ(x)‖ = ‖φψ(a ⊗ b) − φψ(x)‖ ≤ ‖a ⊗ b − x‖ ≤ ε.

If E×F is a Ditkin set, there exists y ∈ j(E×F ) such that ‖a⊗b−(a⊗b)y‖ ≤ ε.
Then

‖a− aφψ(x)‖ = ‖φψ(a ⊗ b) − φψ(a ⊗ b)φψ(x)‖
= ‖φψ(a ⊗ b − (a ⊗ b)x)‖
≤ ‖a ⊗ b − (a ⊗ b)x‖
≤ ε.

Since φψ(x) ∈ j(E) and ε > 0 was arbitrary, we obtain that a ∈ j(E) in the
first case and a ∈ aj(E) in the second case. This proves the theorem. �	
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One of the special situations in which a converse to Theorem 5.7.2 can be
established is when Δ(B), say, is discrete.

Theorem 5.7.3. Let A and B be regular commutative Banach algebras and
suppose that A ̂⊗πB is semisimple and satisfies Ditkin’s condition at infinity.
In addition, let Δ(B) be discrete. Then spectral synthesis holds for A ̂⊗πB if
and only if it holds for A.

Proof. According to Theorem 5.7.2, we only have to show that if spectral
synthesis holds for A, then it holds for A ̂⊗πB. Thus let T be a closed subset
of Δ(A ̂⊗πB) and let x ∈ k(T ). Write T as

T =
⋃

ψ∈Δ(B)

(Eψ × {ψ}),

where each Eψ is a closed subset of Δ(A).
Because A ̂⊗πB satisfies Ditkin’s condition at infinity, given ε > 0, there

exists y ∈ A ̂⊗πB such that ‖x−xy‖ ≤ ε and ŷ has compact support. Therefore
it is enough to show that x ∈ j(T ) for every x ∈ k(T ) such that x̂ has compact
support. Then, since Δ(B) is discrete,

supp x̂ =
n
⋃

i=1

(Si × {ψi}),

where ψi ∈ Δ(B) and Si is a compact subset of Δ(A), 1 ≤ i ≤ n. Now, since
A ̂⊗πB is semisimple and regular (Lemma 4.2.20), there exists a partition of
unity associated to these data; that is, there are u1, . . . , un ∈ A ̂⊗πB such
that supp ûi ⊆ Δ(A) × {ψi} and x =

∑n
i=1 xui (Corollary 4.2.12). It suffices

to show that xui ∈ j(T ) for each 1 ≤ i ≤ n. Thus we can henceforth assume
that

x ∈ k((Eψ × {ψ}) ∪ (Δ(A) × (Δ(B) \ {ψ})))
for some ψ ∈ Δ(B). Define a closed ideal I of A ̂⊗πB by

I = k(Δ(A ̂⊗πB) \ (Δ(A) × {ψ})) = k(Δ(A) × (Δ(B) \ {ψ})).

The ideal A ̂⊗πk(Δ(B)\{ψ}) of A ̂⊗B has the same hull as I. Because A ̂⊗πB
is semisimple and regular) and ∅ is a Ditkin set for A ̂⊗πB, every open and
closed subset of Δ(A ̂⊗πB) is a set of synthesis (Proposition 5.2.12). It follows
that

I = A ̂⊗π k(Δ(B) \ {ψ}).
So the element x ∈ I can be expressed as x =

∑∞
i=1 ai ⊗ bi, where ai ∈ A and

bi ∈ k(Δ(B) \ {ψ}). Since B is semisimple, the ideal k(Δ(B) \ {ψ}) is one-
dimensional and therefore there exists b ∈ B such that ψ(b) �= 0 and bi = αib,
αi ∈ C, for each i ∈ N. Thus x = a ⊗ b with a =

∑∞
i=1 αiai. Now, a ∈ k(Eψ)

since x ∈ k(Eψ × {ψ}) and ψ(b) �= 0. Since Eψ is a spectral set, a ∈ j(Eψ)
and so x = a⊗ b ∈ j(Eψ × {ψ}). Finally, since x̂ = 0 on Δ(A)× (Δ(B)\{ψ}),
it follows that x ∈ j(E), as required.
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Theorem 5.7.3 applies to L1-algebras of vector-valued functions on com-
pact groups as follows.

Corollary 5.7.4. Let G be a compact Abelian group and A a semisimple and
regular commutative Banach algebra. Suppose that A is Tauberian and has a
bounded approximate identity. Then spectral synthesis holds for L1(G, A) if
and only if it holds for A.

Proof. Recall first that L1(G, A) = L1(G) ̂⊗πA is semisimple by Theorem
2.11.6 because L1-spaces share the approximation property. Thus, if spectral
synthesis holds for L1(G, A) then it holds for A (Theorem 5.7.2).

For the converse, note that G is compact and hence Δ(L1(G)) = ̂G is
discrete. Therefore, by Theorem 5.7.3, it suffices to observe that L1(G, A)
satisfies Ditkin’s condition at infinity. Because both L1(G) and A are Taube-
rian, L1(G) ̂⊗πA is Tauberian as well. Moreover, L1(G) ̂⊗πA has a bounded
approximate identity since this is true of L1(G) and A (Lemma 1.5.3). It fol-
lows that L1(G) ̂⊗πA satisfies Ditkin’s condition at infinity since this is true of
any commutative Banach algebra which is Tauberian and has an approximate
identity. �	

Using Malliavin’s deep theorem mentioned at the beginning of this section,
Corollary 5.7.4 admits the following generalisation. Let G be a locally compact
Abelian group and let A be as in Corollary 5.7.4. Then spectral synthesis holds
for L1(G, A) if and only if G is compact and spectral synthesis holds for A.
Indeed, if spectral synthesis holds for L1(G) ̂⊗πA, then the same is true of
L1(G) (Theorem 5.7.2) and Malliavin’s theorem forces G to be compact.

Lemma 5.7.5. Suppose that A and B are Tauberian commutative Banach
algebras, and let E and F be closed subsets of Δ(A) and Δ(B), respectively.
Then

j(E) ⊗ B + A ⊗ j(F ) ⊆ j(E × F ).

Proof. It suffices to show that if

x =
n
∑

k=1

ak ⊗ bk +
m
∑

l=1

cl ⊗ dl,

where ak ∈ j(E), bk ∈ B, cl ∈ A, and dl ∈ j(F ), then x ∈ j(E × F ). Of course,
we can assume that ak �= 0 for all k and dl �= 0 for all l. Because both A and
B are Tauberian, given ε > 0, there exist vk ∈ B and ul ∈ A such that v̂k and
ûl have compact support in Δ(B) and Δ(A), respectively, and

‖vk − bk‖ ≤ ε

2n‖ak‖
and ‖ul − cl‖ ≤ ε

2m‖dl‖

(1 ≤ k ≤ n, 1 ≤ l ≤ m). Let
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y =
n
∑

k=1

ak ⊗ vk +
m
∑

l=1

ul ⊗ dl.

Then ‖y−x‖ ≤ ε and ŷ has compact support and vanishes on a neighbourhood
of E×F . Thus y ∈ j(E×F ), and since ε > 0 was arbitrary, we conclude that
x ∈ j(E × F ). �	

Lemma 5.7.6. Let F be a closed subset of Δ(A) and ϕ ∈ Δ(A).

(i) Every x ∈ k({ϕ} × F ) has a representation of the form

x =
∞
∑

j=1

(aj ⊗ bj) + e ⊗ b,

where aj ∈ k({ϕ}, bj ∈ B, e ∈ A, and b ∈ k(F ).
(ii) k({ϕ} × F ) = k(ϕ) ̂⊗πB + A ̂⊗πk(F ).

Proof. (i) Let x ∈ k({ϕ} × F ). Then
∑∞

j=1 yj ⊗ bj , where yj ∈ A, bj ∈ B,
and

∑∞
j=1 ‖yj‖ · ‖bj‖ < ∞. Choose e ∈ A such that ϕ(e) = 1 and write

yj = aj + λje, where aj ∈ k(ϕ) and λj ∈ C. Then, since |λj | = |ϕ(yj)| ≤ ‖yj‖
and ‖aj‖ = ‖yj − λje‖ ≤ ‖yj‖(1 + ‖e‖),

x =
∞
∑

j=1

aj ⊗ bj + e ⊗
∞
∑

j=1

λjbj .

Let b =
∑∞

j=1 λjbj . Then, for each ψ ∈ F ,

ψ(b) = ψ

( ∞
∑

j=1

ϕ(xj)bj

)

= (ϕ ⊗ ψ)(x) = 0.

Thus b ∈ k(F ), and this establishes the desired representation of x.
(ii) Because k(ϕ) ̂⊗πB and A ̂⊗πk(F ) are both contained in k({ϕ} × F ),

the statement follows from (i). �	

Corollary 5.7.7. Let A and B be regular and Tauberian commutative Banach
algebras and suppose that A ̂⊗πB is semisimple. Let {ϕ} be a spectral set for
A and F ⊆ Δ(B) a spectral set for B. Then {ϕ} × F is a spectral set for
A ̂⊗πB.

Proof. It follows from part (ii) of Lemma 5.7.6 and the hypotheses that

k({ϕ} × F ) = k(ϕ) ̂⊗πB + A ⊗ k(F )
= j(ϕ) ̂⊗πB + A ⊗ j(F )
⊆ j(ϕ) ⊗ B + A ⊗ j(F ).

Since A and B are Tauberian, by Lemma 5.7.5 j(ϕ)⊗B and A⊗j(F ) are both
contained in j({ϕ} × F ). Thus k({ϕ} × F ) ⊆ j({ϕ} × F ), and so {ϕ} × F is
a spectral set because A ̂⊗πB is regular and semisimple. �	
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Theorem 5.7.8. Let A and B be unital regular commutative Banach algebras.
Suppose that A ̂⊗πB is semisimple, and let E be a closed subset of Δ(A ̂⊗πB)
such that the set

{ϕ ∈ Δ(A) : ({ϕ} × Δ(B)) ∩ ∂(E) �= ∅}

is scattered in Δ(A). Then E is a set of synthesis for A ̂⊗πB provided that
one of the following conditions (i) or (ii) is satisfied.

(i) For each closed subset F of Δ(B) and each ϕ ∈ Δ(A), the set {ϕ} ×F is
a Ditkin set for A ̂⊗πB.

(ii) Each closed subset F of Δ(B) is a set of synthesis and satisfies condition
(D) of Definition 5.2.9, and likewise for each singleton {ϕ}, ϕ ∈ Δ(A).

Proof. We apply Theorem 5.2.13 to A ̂⊗πB, T = Δ(A) and the projection

φ : Δ(A ̂⊗πB) = Δ(A) × Δ(B) → Δ(A), (ϕ, ψ) → ϕ.

Then the assertion of the theorem follows at once if condition (i) is satisfied.
So assume that (ii) holds. We claim that then (i) holds. Let ϕ ∈ Δ(A)

and let F be a closed subset of Δ(B). By Corollary 5.7.7, {ϕ} × F is a set
of synthesis. To conclude that {ϕ} × F is actually a Ditkin set, in virtue of
Lemmas 5.2.8 and 5.2.10 it suffices to show that {ϕ} × F satisfies condition
(D).

Thus let U be an open neighbourhood of ϕ in Δ(A) and V an open neigh-
bourhood of F in Δ(B). By hypothesis (D) holds for both F and {ϕ}. There-
fore there exist constants c, d > 0 and elements a ∈ A and b ∈ B with
the following properties: ‖a‖ ≤ c, supp â ⊆ U , â = 1 near ϕ and ‖b‖ ≤ d,
supp̂b ⊆ V , ̂b = 1 near F . Then the element x = a ⊗ b of A ̂⊗πB satisfies
‖x‖ ≤ d, supp x̂ ⊆ U × V and x̂ = 1 in a neighbourhood of {ϕ} × F . So (ii)
⇒ (i), and this finishes the proof of the theorem. �	

Let X be a compact Hausdorff space, E a closed subset of X , and U an
open set containing E. Choose an open set V such that E ⊆ V and V ⊆ U .
By Urysohn’s lemma, there exists f ∈ C(X) such that f = 1 on V , f = 0 on
X \ U , and ‖f‖∞ = 1. Thus condition (D) is trivially satisfied, and because
every closed subset of X is a spectral set, we have the following straightforward
consequence of Theorem 5.7.8.

Corollary 5.7.9. Let X be a compact Hausdorff space and A a regular and
semisimple commutative Banach algebra with identity. Suppose that Δ(A) is
scattered and that every singleton {ϕ}, ϕ ∈ Δ(A), is a spectral set and satisfies
condition (D). Then spectral synthesis holds for A ̂⊗πC(X).

Proof. We only have to note that A ̂⊗πC(X) is semisimple because A and
C(X) are semisimple and C(X) has the approximation property. �	
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It is worth pointing out in this context that spectral synthesis need not
hold for the projective tensor product C(X) ̂⊗πC(Y ), where X and Y are
compact Hausdorff spaces. In fact, it is an essential step in Varopoulos’s proof
[129] of Malliavin’s theorem that spectral synthesis fails for C(G) ̂⊗πC(G)
when G is any infinite compact group.

5.8 Exercises

Exercise 5.8.1. Let A be a unital regular semisimple commutative Banach
algebra and let E, F ⊆ Δ(A) be sets of synthesis for A. Show that E ∪F is a
set of synthesis if and only if

j(E) ∩ j(F ) = j(E) ∩ j(F ).

It is an interesting question of when, for arbitrary closed subsets E and F of
Δ(A), this equality holds.

Exercise 5.8.2. Let A be a commutative Banach algebra and ϕ ∈ Δ(A).
A linear functional D on A is called a point derivation at ϕ if D(xy) =
ϕ(x)D(y)+ ϕ(y)D(x) for all x, y ∈ A. Suppose that the singleton {ϕ} is a set
of synthesis. Prove that A does not admit a nonzero point derivation at ϕ.
(Hint: Let D be a point derivation at ϕ and let J be the ideal consisting of
all a ∈ A such that ϕ(a) = D(a) = 0. Show that the hull of J equals {ϕ}.)

Exercise 5.8.3. Let X be a locally compact Hausdorff space. Prove that the
following three conditions are equivalent.

(i) X is scattered.
(ii) The one-point compactification of X is scattered.
(iii) Every f ∈ C0(X) has countable range.

Let A be a regular and semisimple commutative Banach algebra satisfying
Ditkin’s condition at infinity. For a closed subset E of Δ(A), let ΔE denote
the set of all ϕ ∈ Δ(A) with the property that there exists x ∈ k(E) such that
x̂ does not belong locally to j(E) at ϕ. The set ΔE is called the difference
spectrum of E. Retain this situation and notation in the next exercises.

Exercise 5.8.4. For ϕ ∈ ΔE , show that
(i) ϕ belongs to the boundary ∂(E) of E in Δ(A).
(ii) ϕ has no closed relative neighbourhood in E which is a set of synthesis

for A.

Exercise 5.8.5. For closed subsets E1 and E2 of Δ(A), prove
(i) ΔE1∩E2 ⊆ ΔE1 ∪ ΔE2 ∪ (∂(E1) ∩ ∂(E2)).
(ii) ΔE1 ∪ ΔE2 ⊆ ΔE1∪E2 ∪ (E1 ∩ E2).

(Hint: For (ii), let ϕ ∈ ΔE1∩E2 and assume that ϕ �∈ ∂(E1) ∩ ∂(E2). Show
that ϕ ∈ ∂(Ej) for exactly one j ∈ {1, 2} and that then ϕ ∈ ΔEj .)
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Exercise 5.8.6. Use the fact that for n ≥ 3, Sn−1 ⊆ Rn = Δ(L1(Rn)) is not
a set of synthesis for L1(Rn) to show that ΔSn−1 = Sn−1.

Exercise 5.8.7. Let I be a closed ideal of A and let x ∈ A be such that x̂
belongs locally to I at every ϕ ∈ Δ(A) \ E. Show that aj(E) ⊆ I.

Exercise 5.8.8. Suppose that there exists a Ditkin set F such that ΔE ⊆
F ⊆ E. Prove that E is a set of synthesis.
(Hint: Conclude from Exercise 5.8.7 that xj(ΔE) ⊆ j(E) for every x ∈ k(E).)

For a closed subset E of Δ(A), let ΓE denote the set of all ϕ ∈ Δ(A) with
the property that there exists x ∈ j(E) such that x̂ does not belong locally
to xj(E).

Exercise 5.8.9. Suppose that there exists a Ditkin set F such that ΓE ⊆
F ⊆ E. Use Exercise 5.8.8 to prove that E is a Ditkin set.

Exercise 5.8.10. Let Lipα[0, 1] be the algebra of Lipschitz functions of order
α on [0, 1] and identify Δ(Lipα[0, 1]) with the interval [0, 1]. Let E be a closed
subset of [0, 1] such that E �= ∅ and E �= [0, 1] and let d(t, E) = inf{|t−s| : s ∈
E}, t ∈ [0, 1]. Let 0 < α ≤ 1 and define f ∈ Lipα[0, 1] by f(t) = d(t, E)α. Let
‖ ·‖α denote the norm on Lipα[0, 1] (Exercise 1.6.11). Show that ‖f −g‖α ≥ 1
for every g ∈ j(E). Thus E fails to be a set of synthesis for Lipα[0, 1].

Exercise 5.8.11. Identify functions on T with 2π-periodic functions on R.
Let C1(T) denote the subalgebra of C(T) consisting of all continuously differ-
entiable functions, equipped with the norm ‖f‖ = ‖f‖∞ + ‖f ′‖∞. Determine
Δ(C1(T)) and all the closed primary ideals of C1(T) (compare the results for
C1[0, 1] in Section 5.3).

Exercise 5.8.12. Let C1[0, 1] be the Banach algebra of all continuously dif-
ferentiable functions f : [0, 1] → C with the norm ‖f‖ = ‖f‖∞ + ‖f ′‖∞. For
a ∈ [0, 1], let

I(a) = {f ∈ C1[0, 1] : f(0) = 0}.

Show that I(a) cannot possess a bounded approximate identity.

Exercise 5.8.13. Let n ∈ N and E a closed subset of [0, 1] = Δ(Cn[0, 1]).
Use the results of Section 5.3 and Leibniz’ rule to show that k(E)n+1 ⊆ j(E).
Moreover, show that if E is a singleton, then n + 1 is the smallest integer k
such that fk ∈ j(E).

Exercise 5.8.14. Let M be the Mirkil algebra as investigated in Section 5.4
and let Me be its unitisation. Prove that a subset E of Z = Δ(M) is a set of
synthesis for M if and only if E ∪ {∞} ⊆ Δ(Me) is a set of synthesis for Me.
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Exercise 5.8.15. Let M be the Mirkil algebra and let E be a subset of
Z = Δ(M). Let f ∈ k(E) and suppose that f is continuous. Show that
f ∈ f ∗ j(E).
(Hint: Let (kn)n∈N be the Fejér kernel; that is,

kn(t) =
n
∑

j=−n

(

1 − |j|
n + 1

)

eijt, t ∈ [−π, π].

Use that ̂kn has finite support and that, by Fejér’s theorem, kn ∗ f converges
uniformly to f as n → ∞.)

Exercise 5.8.16. Let M be the Mirkil algebra. Show that for every subset E
of Δ(M) and f ∈ k(E), f ∗ f ∈ (f ∗ f) ∗ j(E). Conclude that k(E) ∗ k(E) ⊆
j(E).

Exercise 5.8.17. For n ∈ N0, let In be the closed ideal of A(D) defined by

In = {f ∈ A(D) : f (j)(0) = 0 for 0 ≤ j ≤ n}.

Show that h(In) = {0} and In+1 is a proper subset of In for all n ∈ N0. Since
⋂∞

n=0 In = {0}, this yields that there does not exist a minimal primary ideal
with hull equal to {0}.

Exercise 5.8.18. Extend Corollary 5.5.4 as follows. Let G be a locally com-
pact Abelian group and F ⊆ L1(G), and let I denote the translation invariant
closed linear subspace of L1(G) generated by F . Then the following two con-
ditions are equivalent.

(i) I = L1(G).
(ii) For each α ∈ ̂G, there exists f ∈ F such that ̂f(α) �= 0.

(Hint: For (ii) ⇒ (i), let C be any compact subset of ̂G and show the existence
of some f ∈ I such that ̂f(α) �= 0 for all α ∈ C. Then use that L1(G) is
Tauberian.)

Exercise 5.8.19. Let G be a locally compact Abelian group. For a bounded
continuous function f on G and a constant c the statement ‘f(x) → c as
x → ∞′ means that for every ε > 0 there exists a compact subset C of G such
that |f(x) − c| ≤ ε for all x ∈ G \ C.

Now, let f ∈ L∞(G) and g ∈ L1(G) such that ĝ(α) �= 0 for all α ∈ ̂G. Let
c ∈ C and suppose that

(g ∗ f)(x) → c ĝ(1G) as x → ∞.

Prove that then, for all h ∈ L1(G),

(h ∗ f)(x) → ĉh(1G) as x → ∞.

(Hint: First reduce to the case c = 0, and then employ Corollary 5.5.5.)
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Exercise 5.8.20. Let G be a compact Abelian group, f ∈ L1(G), and ε > 0.
Apply Corollary 5.5.4 to show that there exist α1, . . . , αn ∈ ̂G and c1, . . . , cn ∈
C such that

∥

∥

∥

∥

∥

∥

f − f ∗
n
∑

j=1

cjαj

∥

∥

∥

∥

∥

∥

1

≤ ε.

Exercise 5.8.21. Let G be a compact Abelian group and identify Δ(L2(G))
with ̂G (Exercise 2.12.31). Every f ∈ L2(G) can be written as an L2-
convergent series f =

∑

χ∈ ̂G
̂f(χ)χ. Let E be any subset of ̂G.

(i) Show that f ∈ k(E) if and only if ̂f(χ) = 0 for all χ ∈ ̂G \ E and
f ∈ j(E) if and only if f =

∑n
j=1

̂f(χj)χj , where χ1, . . . , χn ∈ ̂G \ E.
(ii) Use (i) to show that E is a Ditkin set.

Exercise 5.8.22. Let G be a locally compact Abelian group and ω a weight
function on G such that ̂G(ω) = ̂G. Let Γ be a compact open subgroup of ̂G.
Prove that Γ is a Ditkin set for L1(G, ω).
(Hint: The subgroup H = {x ∈ G : γ(x) = 1 for all γ ∈ Γ} of G is compact
and open. Verify that f ∗ 1H = 0 and that ̂1H = |H | · 1Γ .)

Exercise 5.8.23. Let f, g ∈ l1(Z) and suppose that there exists δ > 0 such
that | ̂f(z)| ≥ δ for all z ∈ T = Δ(l1(Z)) such that ĝ(z) �= 0. Show that
g = h ∗ f for some h ∈ l1(Z). Note that this generalizes Wiener’s theorem
(Corollary 2.2.11).
(Hint: Let I = l1(Z)∗f , the ideal generated by f . Then h(I)∩ supp ĝ = ∅ and
hence g ∈ I.)

Exercise 5.8.24. Let C be a convex compact subset of Rn, n ∈ N. Prove
that C is a set of synthesis for L1(Rn). For that, one can assume without loss
of generality that 0 ∈ C. Then proceed as follows. For f ∈ L1(Rn) such that
̂f |C = 0 and each 0 < α < 1, define fα ∈ L1(Rn) by fα(x) = f((1/α)x), x ∈
Rn, and show that

(i) ̂fα vanishes in a neighbourhood of C.
(ii) ‖fα − f‖1 → 0 as α → 1.

Exercise 5.8.25. Use the same method as in Exercise 5.8.24 to show that
the set {y ∈ Rn : ‖y‖ ≥ 1} is a set of synthesis for L1(Rn). This example,
Exercise 5.8.24, and Schwartz’ result that the sphere Sn−1 ⊆ Rn fails to be a
set of synthesis for L1(Rn) if n ≥ 3, show that the intersection of two sets of
synthesis need not be a set of synthesis.

Exercise 5.8.26. A closed subset E of R2 is called a polyhedral set if its
boundary is a union of countably many translates of closed subsets Fj , where
each Fj is a closed subset with countable boundary of some one-dimensional
subgroup of R. Use the injection theorem for Ditkin sets for L1(R2) and
Theorem 5.2.2 to prove that every polyhedral set in R2 is a Ditkin set for
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L1(R2). In particular, sets of the form [a, b] × [c, d], a < b, c < d, are Ditkin
sets for L1(R2).

Exercise 5.8.27. Let E be an infinite and proper subset of Z. Prove that E
belongs to R(Z) (if and) only if there are finitely many arithmetic progressions
S1, . . . , Sn; that is, Sj = {pj + nqj : n ∈ Z}, 0 ≤ pj < qj , pj, qj ∈ Z, 1 ≤ j ≤ n,
such that the symmetric difference E�(S1 ∪ . . . ∪ Sn) is finite.
(Hint: Given two arithmetic progressions c1 + d1Z and c2 + d2Z, let d be the
least common multiple of d1 and d2 and express c1 + d1Z \ c2 + d2Z in terms
of cosets of dZ.)

Exercise 5.8.28. Use Exercise 5.8.27 and the description of the closed sub-
groups of R and of T to determine the closed coset rings Rc(R) and Rc(T).

Exercise 5.8.29. Let G be a compact Abelian group and let I be a closed
ideal of L1(G) with bounded approximate identity. Prove that I has a bounded
approximate identity consisting of functions of the form u =

∑n
j=1 λjχj , where

χ1, . . . , χn ∈ ̂G and λ1, . . . , λn ∈ C.

Exercise 5.8.30. Let G be a locally compact Abelian group and I a closed
ideal of L1(G). Suppose that P is a bounded projection from L1(G) onto I
such that P (Lxf) = Lx(P (f)) for all f ∈ L1(G) and x ∈ G. Use Exercise
2.12.57 and results of Section 5.6 to show that h(I) ∈ Rc(G).

Let G be a locally compact Abelian group and H a closed subgroup of G.
Recall from Section 1.3 that TH : L1(G) → L1(G/H) denotes the homomor-
phism defined by

THf(xH) =
∫

H

f(xh)dh, f ∈ L1(G),

and that the ideal kerTH has a bounded approximate identity.

Exercise 5.8.31. Let G be a locally compact Abelian group, Γ a closed sub-
group of ̂G, and H the closed subgroup of G such that Γ = Ĝ/H. Let Δ be
an open subgroup of Γ and γ ∈ Γ , and let I be a closed ideal of L1(G) with
h(I) = Γ \ γ Δ. Show that there exists a (unique) finite idempotent measure
μ on G/H such that I = T−1

H (μ ∗ L1(G/H)).

Exercise 5.8.32. Let G be a locally compact Abelian group and I a closed
ideal in L1(G). Use Exercise 5.8.31 and Theorem 2.6.12 to prove that I has a
bounded approximate identity if and only if I is of the form

I =
n
⋂

j=1

χj · T−1
H (μj ∗ L1(G/Hj)),

where, for 1 ≤ j ≤ n, χj is a character of G, Hj is a closed subgroup of G,
and μj is a finite idempotent measure on G/Hj .
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Exercise 5.8.33. Let G be a locally compact group and suppose that the
Fourier algebra A(G) possesses an approximate identity. Identify Δ(A(G))
with G (Theorem 2.9.4).

(i) Let (uα)α be the net constructed in Exercise 2.12.54 and consider func-
tions of the form v − uαv, v ∈ A(G), to show that {e} is a Ditkin set for
A(G).

(ii) Deduce from (i) that singletons in G are Ditkin sets for A(G).

Let A be a semisimple and regular commutative Banach algebra. A closed
subset E of Δ(A) is called a weak spectral set if every element of the quotient
algebra k(E)/j(E) is nilpotent; that is, for every x ∈ k(E) there exists m ∈ N,
depending on x, such that xm ∈ j(E). We say that weak spectral synthesis
holds for A if every closed subset of Δ(A) is a weak spectral set. We have seen
in Exercises 5.8.13 and 5.8.16 that weak spectral synthesis holds for Cn[0, 1]
and for the Mirkil algebra even though for both of them spectral synthesis
fails to hold. Moreover, given E ⊆ Δ(A), in both cases there exists m ∈ N

such that am ∈ j(E) for all a ∈ k(E). This latter fact is a general phenomenon
as the following exercise shows.

Exercise 5.8.34. Let A be as above and let E ⊂ Δ(A) be a weak spectral
set. For n ∈ N, let Sn = {x ∈ k(E) : xn ∈ j(E)}.

(i) Show that there exist m ∈ N, a ∈ A and ε > 0 such that

{y ∈ A : ‖y − a‖ < ε} ⊆ Sm.

(ii) Let m, a and ε be as in (i) and let x ∈ A be arbitrary. Then a+(1/k)x ∈
Sm for sufficiently large k. Conclude that x ∈ Sm + Sm.

(iii) Show that Sm + Sm ⊆ S2m and hence A = S2m.

As mentioned earlier, it is an open question whether the union of two
sets of synthesis is again a set of synthesis. However, the union of two weak
spectral sets turns out to be a weak spectral set. In particular, a finite union
of spectral sets is at least a weak spectral set. For a weak spectral set E,
by Exercise 5.8.34, there exists a smallest k ∈ N such that ak ∈ j(E) for all
a ∈ k(E). Denote this number by ξ(E).

Exercise 5.8.35. Let E and F be weak spectral sets for A. Prove that E ∪F
is a weak spectral set and ξ(E ∪ F ) ≤ ξ(E) + ξ(F ).

Exercise 5.8.36. Let E be a closed subset of Δ(A) such that k(E), as a
closed ideal in A, is generated by finitely many elements x1, . . . , xn. Suppose
that there exists m ∈ N such that xm

j ∈ j(E) for 1 ≤ j ≤ n. Show that
xnm ∈ j(E) for every x ∈ k(E). So E is a weak spectral set and ξ(E) ≤ nm.

Let A be a commutative Banach algebra. A sequence (en)n∈N in A is called
an orthogonal basis for A if it satisfies the following conditions.

(1) enem = δnmen for all n, m ∈ N.
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(2) Every x ∈ A has a unique representation of the form x =
∑∞

n=1 cnen,
where cn ∈ C and convergence means norm convergence of the corresponding
sequence of partial sums.

Exercise 5.8.37. Let A be a commutative Banach algebra with orthogonal
basis (en)n. For each n ∈ N, define ϕn : A → C by

ϕn

( ∞
∑

k=1

cnen

)

= cn.

Prove that ϕn ∈ Δ(A) and that the map n → ϕn is a homeomorphism between
N and Δ(A). Deduce that A is regular and semisimple.
(Hint: For surjectivity of the map, show that given ϕ ∈ Δ(A), there exists
precisely one n ∈ N such that ϕ(en) �= 0.)

Exercise 5.8.38. Let A be as in the preceding exercise. Show that spectral
synthesis holds for A; that is,

I = k(h(I)) =
⋂

{kerϕn : ϕn(I) = {0}}

for every closed ideal I of A.

Exercise 5.8.39. Let A be a commutative Banach algebra with orthogonal
basis and let I be a nonzero closed ideal of A. Use Exercise 5.8.38 to show
that I has an (unbounded) approximate identity.

Exercise 5.8.40. Show that the following examples provide Banach algebras
with orthogonal bases.

(i) The convolution algebras Lp(G), 1 ≤ p < ∞, where G is a first count-
able compact Abelian group.

(ii) The sequence algebras c0(N) and lp(N), 1 ≤ p < ∞, with component-
wise operations.

(iii) The Hardy spaces Hp(D◦), 1 < p < ∞, with the Hadamard product
(see Exercise 1.6.13). To see this, note that if f and g in Hp(D◦) are repre-
sented by the power series

∑∞
n=0 anzn and

∑∞
n=0 bnzn, respectively, then f •g

is represented by the power series
∑∞

n=0 anbnzn.

5.9 Notes and references

Since usually spectral synthesis does not hold for a semisimple and regular
commutative Banach algebra, it is a major issue to study the classes of spectral
sets and of Ditkin sets and to establish permanence properties. This is the
main concern of Section 5.2. Theorem 5.2.5 on unions of sets of synthesis
appears, in the case of the Fourier algebra of a locally compact group G, in
Warner [131], and was shown by Reiter [103] for disjoint sets. In this context,
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see also [94]. Injection theorems for sets of synthesis and Ditkin sets can be
found in [105]. Theorem 5.2.13 extends Theorem 1.2 of [8], which in turn is a
generalisation of the Wiener–Ditkin theorem.

The ideal theory of Cn[0, 1], as presented in Section 5.3, is classical and
goes back to Gelfand, Raikov, and Shilov [41]. The algebra M , discussed in
Section 5.4, was invented by Mirkil [90] to provide an example of a regular
and semisimple commutative Banach algebra with discrete structure space,
for which nevertheless spectral synthesis fails. The Mirkil algebra was studied
further by Atzmon [9] and Warner [133]. Somewhat surprisingly, it also turned
out to serve as a counterexample to the union conjecture in that Δ(M) con-
tains two disjoint sets of synthesis the union of which is not a set of synthesis.

The literature on spectral synthesis problems for the group algebra L1(G)
of a locally compact Abelian group is enormous. We therefore confine ourselves
to just a few highlights and historical remarks and otherwise refer the reader
to the monographs [11], [46], [54], [55], [105], and [113]. Theorem 5.5.1(ii) was
shown by Rudin [113, Theorem 2.6.8] using structure theory of locally compact
Abelian groups. The proof presented here was given in [10]. Kaplansky [70]
showed that singletons in ̂G = Δ(L1(G)) are sets of synthesis. This result was
improved by Helson [50] to the effect that closed subsets of ̂G with scattered
boundary are spectral sets. The first and best accessible example of a non-
spectral set is due to Schwartz [118]. For n ≥ 3, the unit sphere Sn−1 in
Rn fails to be a spectral set for L1(Rn). On the other hand, S1 ⊆ R2 is a
set of synthesis for L1(R2) [51]. Spectral synthesis holds for L1(G) when G
is compact. It is Malliavin’s celebrated achievement that conversely spectral
synthesis fails for L1(G) whenever G is noncompact [84]. More or less complete
accounts of Malliavin’s proof are given in all of the books mentioned above. An
alternative approach to Malliavin’s theorem was found by Varopoulos [129].
A main step in his proof is the failure of spectral synthesis for the projective
tensor product C(G) ̂⊗πC(G) for any infinite compact Abelian group.

There are two major open questions in the spectral synthesis of L1(G).
The first one is whether any set of synthesis in ̂G actually is a Ditkin set.
The second one is whether the union of two sets of synthesis is again a set
of synthesis. Note that because finite unions of Ditkin sets are Ditkin sets
(Lemma 5.2.1), an affirmative answer to the first question would imply an
affirmative answer to the second.

In Section 5.5 we have applied the general results of Section 5.2 and results
of Section 4.4 on L1(G) to produce sets of synthesis and Ditkin sets in ̂G.
The identification of the closed ideals in L1(G) with bounded approximate
identities, which we have exposed in Section 5.6, is mainly due to Liu, van
Rooij, and Wang [80], building on a description of the closed sets in the coset
ring of ̂G established by Gilbert [43] and, independently and with a much
simpler proof, by Schreiber [117]. A major ingredient is Cohen’s idempotent
theorem [21], the simple proof of which was found by Ito and Amemiya [59].
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Very little is known regarding spectral synthesis in projective tensor prod-
ucts A ̂⊗πB in terms of A and B, although Δ(A ̂⊗πB) is canonically homeo-
morphic to Δ(A) × Δ(B). We have presented some partial results in Section
5.7. Theorem 5.7.8 generalizes results of [8].

At this point, it seems in order to mention a few, mostly recent, devel-
opments extending results on L1(G). Let G be an arbitrary locally compact
group. Then closed subgroups of G = Δ(A(G)) are sets of synthesis for A(G)
[127]. Using Malliavin’s theorem and a deep theorem of Zelmanov [144] on
the existence of infinite Abelian subgroups in infinite compact groups, it was
shown in [68], under a mild additional hypothesis on G (the existence of an
approximate identity in the weakest possible sense) that spectral synthesis
holds for the Fourier algebra A(G) (if and) only if G is discrete. In [67] an
injection theorem for Ditkin sets of Fourier algebras was proved. Moreover,
for an amenable locally compact group G, in [33] a complete description of the
closed ideals with bounded approximate identities in A(G) was established.

Weak spectral synthesis in commutative Banach algebras, as first stud-
ied by Warner [132] (compare Exercises 5.8.34 to 5.8.36), has since gained
some attention (see [95], [100], [65], and [66]) since there are several exam-
ples of weak spectral sets which fail to be spectral sets, such as the sphere
Sn−1 ⊂ Rn = Δ(L1(Rn)) for n ≥ 3, and also algebras, such as Lipschitz
algebras, for which weak spectral synthesis holds, whereas spectral synthesis
fails. Concerning the concept of difference spectrum, which we have briefly
addressed in Exercises 5.8.4 and 5.8.5, we refer to [115], [125], [105], and [95].
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Appendix

The purpose of this short appendix is twofold. In the first three sections,
which concern point set topology, functional analysis, and measure theory,
we simply repeat some standard notation and concepts and list a number
of results that are used throughout the book. No proofs are given and we
tend to be very brief because the reader will have a firm background in these
areas. However, because we cannot expect the reader to be familiar with
basic harmonic analysis, a different viewpoint is taken in the remaining three
sections where we treat Abelian topological groups. Although we just cite
the existence and uniqneness of Haar measure on a locally compact group, we
prove a number of facts about convolution of functions since the group algebra
L1(G) serves as a prominent example in the book and also the Hilbert space
L2(G) is used substantially. In Section 5 we deduce the Pontryagin duality
theorem from the Plancherel formula and point out the bijection between
closed subgroups of G and closed subgroups of the dual group ̂G. Finally, in
Section 6 we describe the coset ring of an Abelian group and the closed sets
in the coset ring of a topological Abelian group.

A.1 Topology

Let X be a topological space. Then C(X) denotes the set of all continuous
complex-valued functions on X and Cb(X) the subspace of all bounded func-
tions in C(X). For f ∈ C(X), the support of f , supp f , is the closure of the set
of all x ∈ X at which f(x) �= 0. The set of all functions in C(X) with compact
support is denoted Cc(X). A function f on X is said to vanish at infinity if
for each ε > 0, there exists a compact subset Kε of X such that |f(x)| < ε
for all x ∈ X \ Kε. Then C0(X) stands for the set of all f ∈ C(X) which
vanish at infinity. Clearly, Cc(X) ⊆ C0(X) ⊆ Cb(X) and all these spaces
coincide with C(X) when X is compact. Also, all these spaces are algebras
under pointwise operations. On Cb(X) we can introduce the supremum norm
defined by ‖f‖∞ = sup{|f(x)| : x ∈ X}. This norm turns Cb(X) and C0(X)
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into Banach spaces. If X is a locally compact Hausdorff space, then Cc(X)
is dense in C0(X). This is a consequence of the Stone–Weierstrass theorem
(Theorem A.1.3 below).

A topological space X is called normal if it is Hausdorff and for each pair
{A, B} of disjoint closed subsets of X there exist open subsets U and V of X
such that A ⊆ U , B ⊆ V and U ∩ V = ∅.

Theorem A.1.1. (Urysohn’s lemma)

(i) Let X be a normal topological space, and let A and B be disjoint closed
subsets of X. Then there exists a continuous function f : X → [0, 1] such
that f |A = 1 and f |B = 0.

(ii) Let X be a locally compact Hausdorff space, and let C be a compact subset
of X and U an open set containing C. Then there exists f ∈ Cc(X) with
f |C = 1, 0 ≤ f(x) ≤ 1 for all x ∈ X and supp f ⊆ U .

Theorem A.1.2. (Tietze’s extension theorem) A Hausdorff space X is nor-
mal if and only if every real valued function, which is defined and continuous
on a closed subset of X, admits a continuous extension to all of X.

A family F of complex-valued functions on a topological space X is said
to strongly separate the points of X if for each x ∈ X , there exists f ∈ F
with f(x) �= 0, and for each x, y ∈ X with x �= y, there exists g ∈ F such
that g(x) �= g(y). The family F is said to be self-adjoint if it contains with a
function f the conjugate complex function f .

Theorem A.1.3. (Stone–Weierstrass theorem) Let X be a locally compact
Hausdorff space, and let A be a self-adjoint subalgebra of C0(X). Suppose that
A strongly separates the points of X. Then A is uniformly dense in C0(X).

Theorem A.1.4. (Arzela–Ascoli) Let X be a locally compact Hausdorff space
and F ⊆ C0(X). Suppose that F satisfies the following two conditions.

(i) The set F (x) = {f(x) : f ∈ F} is bounded for every x ∈ X.
(ii) F is equicontinuous; that is, for each x ∈ X and ε > 0, there exists a

neighbourhood U of x such that |f(y)−f(x)| < ε for all f ∈ F and y ∈ U .

Then F is relatively compact in (C0(X), ‖ · ‖∞).

Theorem A.1.5. (Baire’s category theorem) Let X be either a locally com-
pact Hausdorff space or a complete metric space.

(i) If X is the union of countably many closed subsets, then one of them
contains a nonempty open set.

(ii) The intersection of a countable collection of dense open subsets of X
is dense in X.

Let {Xλ : λ ∈ Λ} be a family of topological spaces. Let X be a nonempty
set and for each λ ∈ Λ, let fλ : X → Xλ be a mapping. Then there exists a
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weakest (or coarsest) topology on X with respect to which all the mappings fλ

are continuous. This topology can be characterized by the universal property
that for any topological space Y and any mapping f : Y → X , f is continuous
if and only if fλ ◦ f : Y → Xλ is continuous for all λ ∈ Λ. In the special case
where X is the Cartesian product of the sets Xλ and, for each λ, pλ is the
projection from X onto Xλ, this topology is called the product topology on X .

Theorem A.1.6. (Tychonoff’s theorem) Let X be the product of topological
spaces Xλ, λ ∈ Λ. Then X is compact in the product topology if and only if
all Xλ are compact.

A compact space C is a compactification of a topological space X if there
exists a continuous injective mapping from X onto a dense subset of C. Let X
be a locally compact Hausdorff space. Then there exists a compact Hausdorff
space ˜X together with an embedding j : X → ˜X such that ˜X \ j(X) is a
singleton. ˜X is uniquely determined up to homeomorphisms and is called the
one-point compactification of X . The space ˜X can be constructed as follows.
Let ˜X = X ∪ {∞} as a set and take the open sets in ˜X to be the open sets in
X together with the complements in ˜X of the compact subsets of X .

Note that each f ∈ C0(X) extends to a continuous function on ˜X, also
denoted f , by setting f(∞) = 0.

Let X be a compact space and Y a Hausdorff space. If f is a continuous
and injective mapping from X into Y , then f is a homeomorphism from X
onto its range f(X).

Proposition A.1.7. If f is a continuous open map of a locally compact Haus-
dorff space X onto a Hausdorff space Y and if K is a compact subset of Y ,
then there exists a compact subset C of X such that f(C) = K.

Proposition A.1.8. Let X be a locally compact Hausdorff space. A subset Y
of X is locally compact (in the induced topology) if and only if there exist a
closed subset A of X and an open subset V of X such that Y = A ∩ V . In
particular, a dense subset of X is locally compact if and only if it is open in
X.

Occasionally, a topology is introduced by designating the closed subsets
rather than the open subsets. The procedure is as follows. A closure operation
on a set X is an assignment A → A from P(X), the collection of all subsets of
X , to itself such that ∅ = ∅, A ⊆ A = A, and A ∪ B = A∪B for all A, B ⊆ X .
If such a closure operation is given, there exists a unique topology on X such
that for each A ⊆ X , A equals the closure of A in X with respect to this
topology.

A.2 Functional analysis

Let E and F be normed linear spaces (over the complex number field C). Note
that a linear transformation T from E into F is continuous if and only if it



322 A Appendix

is bounded. The set B(E, F ) of bounded linear transformations T : E → F is
itself a normed linear space with the norm given by

‖T ‖ = sup{‖Tx‖ : x ∈ E, ‖x‖ ≤ 1},

and B(E, F ) is complete if F is a Banach space. It is common to write B(E)
instead of B(E, E). Composition of bounded linear operators turns B(E) into
a Banach algebra. For T ∈ B(E, F ), the adjoint T ∗ of T is the linear map
from F ∗ into E∗ defined by (T ∗g)(x) = g(Tx) for all g ∈ F ∗ and x ∈ E.
Clearly, T ∗ ∈ B(F ∗, E∗).

For a normed space E, let E∗ denote the dual space of E; that is, E∗ =
B(E, C), the vector space of all continuous linear functionals on E. Thus E∗

is a Banach space when equipped with the norm

‖f‖ = sup {|f(x)| : x ∈ E, ‖x‖ ≤ 1},

f ∈ E∗. The space E embeds isometrically into the second dual space E∗∗ as
follows. For each x ∈ E, define x̂ : E∗ → C by x̂(f) = f(x) for f ∈ E∗. Then
x̂ ∈ E∗∗, and it is a consequence of the Hahn–Banach theorem (Theorem
A.2.1 below) that ‖x̂‖ = ‖x‖.

The weak topology σ(E, E∗) on E is the coarsest topology with respect to
which all the functionals f ∈ E∗ are continuous on E. Similarly, the weak∗-
topology (or w∗-topology) σ(E∗, E) is the coarsest topology on E∗ with respect
to which all the linear functionals x̂ on E∗, x ∈ E, are continuous. Thus a
neighbourhood basis of f0 ∈ E∗ in the w∗-topology is formed by the sets

U(f0, F, ε) = {f ∈ E∗ : |f(x) − f0(x)| < ε for all x ∈ F},

where ε > 0 and F is any finite subset of E.
We now collect some fundamental results about dual spaces and bounded

linear operators.

Theorem A.2.1. (Hahn–Banach) Let E be a normed space and F a (not
necessarily closed) linear subspace of E. If f is a bounded linear functional
on F , then there exists g ∈ E∗ such that g(x) = f(x) for all x ∈ F and
‖g‖ = ‖f‖.

Corollary A.2.2. If F is a linear subspace of E and x is an element of E
which is not contained in the closure of F , then there exists g ∈ E∗ such that
g|F = {0} and g(x) �= 0.

Theorem A.2.3. (Banach–Alaoglu) Let E be a normed space. Then the unit
ball E∗

1 = {f ∈ E∗ : ‖f‖ ≤ 1} of E∗ is w∗-compact.

However, E∗
1 is compact in the norm topology only if E is finite-

dimensional.

Corollary A.2.4. If M is a w∗-closed linear subspace of E∗ and f ∈ E∗ \M ,
then there exists x ∈ E such that f(x) �= 0 but g(x) = 0 for all g ∈ M .
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Theorem A.2.5. (Closed graph theorem) Let E and F be Banach spaces,
and let T : E → F be a linear map. Then the following conditions on T are
equivalent.

(i) T is continuous.
(ii) The graph GT = {(x, Tx) : x ∈ E} of T is closed in E × F .
(iii) If xn → 0 in E and Txn → y in F , then y = 0.

Theorem A.2.6. (Open mapping theorem) Let E and F be Banach spaces,
and let T : E → F be a continuous linear mapping. If T is surjective, then T
is open. In particular, if T ∈ B(E, F ) is bijective, then T−1 ∈ B(F, E).

Corollary A.2.7. If a vector space E is a Banach space with respect to two
norms, say ‖·‖1 and ‖·‖2, and if there is a constant c such that ‖x‖2 ≤ c‖x‖1

for all x ∈ E, then the two norms are equivalent, that is, there is a constant
d such that ‖x‖1 ≤ d‖x‖2 for all x ∈ E.

Theorem A.2.8. (Uniform boundedness principle) Let E be a Banach space,
F a normed space, and {Tλ : λ ∈ Λ} a family of continuous linear maps from
E into F . Suppose that {Tλx : λ ∈ Λ} is bounded in F for each x ∈ E. Then
there exists a constant C ≥ 0 such that ‖Tλ‖ ≤ C for all λ ∈ Λ.

Theorem A.2.9. (Krein–Milman) Let E be a locally convex topological vector
space and let C be a nonempty convex subset of E. If C is compact, then C
is the closed convex hull of the set of its extreme points.

Let E and F be complex vector spaces. The algebraic tensor product
E⊗F of E and F can be introduced in different ways. However, it is uniquely
determined up to isomorphism by the following universal property. Given any
complex vector space G and a bilinear map T : E × F → C, there exists a
unique linear map S : E ⊗ F → G such that S(x ⊗ y) = T (x, y) for all x ∈ E
and y ∈ F .

Suppose that E and F are Banach spaces. A basic natural requirement for
a norm γ on E ⊗ F is to satisfy γ(x⊗ y) = ‖x‖ · ‖y‖ for all x ∈ E and y ∈ F .
Such a norm is called a cross-norm. We now introduce the two cross-norms
which play a role in this book.

Let B2(E∗×F ∗, C) be the space of all bounded bilinear maps from E∗×F ∗

into C, equipped with the norm given by

‖T ‖ = sup {|T (f, g)| : f ∈ E∗
1 , g ∈ F ∗

1 }.

Then B2(E∗ × F ∗, C) is complete. Given x ∈ E and y ∈ F , let Bx,y denote
the element of B2(E∗ × F ∗, C) defined by

Bx,y(f, g) = f(x)g(y), f ∈ E∗, g ∈ F ∗.

Then there is an injective linear map from E⊗F into B2(E∗×F ∗, C) sending
x⊗ y to Bx,y. The norm ε on E ⊗F , inherited from B2(E∗ ×F ∗, C), is called
the injective tensor norm. So
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ε(u) = sup

{

n
∑

j=1

f(xj)g(yj) : f ∈ E∗
1 , g ∈ F ∗

1

}

,

where the supremun is taken over all representations u =
∑n

j=1 xj ⊗ yj of u.
Obviously, ε is a cross-norm. The completion of E ⊗ F in B2(E∗ × F ∗, C) is
called the injective tensor product of E and F and is denoted E ̂⊗εF .

The projective tensor norm π on E ⊗ F is defined by

π(u) = inf

⎧

⎨

⎩

n
∑

j=1

‖xj‖ · ‖yj‖ : u =
n
∑

j=1

xj ⊗ yj

⎫

⎬

⎭

,

where the infimum is taken over all such representations of u. Then π(x⊗y) =
‖x‖ · ‖y‖ for all x ∈ E and y ∈ F . Actually, π is the largest cross-norm on
E ⊗ F . The completion of E ⊗ F with respect to π is called the projective
tensor product of E and F and denoted E ̂⊗πF .

Proposition A.2.10. Let E and F be Banach spaces and let u ∈ E ̂⊗πF and
ε > 0. Then there exist bounded sequences (xn)n in E and (yn)n in F such
that the series

∑∞
n=1 xn⊗yn converges to u and

∑∞
n=1 ‖xn‖ ·‖yn‖ < π(u)+ ε.

In particular, for any u ∈ E ̂⊗πF ,

π(u) = inf

{ ∞
∑

n=1

‖xn‖ · ‖yn‖ : u =
∞
∑

n=1

xn ⊗ yn,

∞
∑

n=1

‖xn‖ · ‖yn‖ < ∞
}

,

where the infimum is taken over all such representations of u.

It follows from Proposition A.2.10 that every element u of E ̂⊗πF has a
representation of the form u =

∑∞
j=1 xj ⊗ yj, where

∑∞
j=1 ‖xj‖ · ‖yj‖ < ∞

and u(f, g) =
∑∞

j=1 f(xj)g(yj) for f ∈ E∗ and g ∈ F ∗.
The following proposition provides a useful description of the projective

tensor product.

Proposition A.2.11. Let E and F be Banach spaces. There exists an iso-
metric isomorphism from B(E, F ∗) onto (E ̂⊗πF )∗ with the property that

〈T,

n
∑

j=1

xj ⊗ yj〉 =
n
∑

j=1

〈Txj, yj〉

for any T ∈ B(E, F ∗), x1, . . . , xn ∈ E and y1, . . . , yn ∈ F .

Let u =
∑∞

n=1 xn ⊗ yn ∈ E ̂⊗πF ,
∑∞

n=1 ‖xn‖ · ‖yn‖ < ∞. Then the series
∑∞

n=1 Bxn,yn converges in B2(E∗ × F ∗, C). This element of B2(E∗ × F ∗, C)
does not depend on the representation of u. Indeed, if

∑∞
n=1 xn ⊗ yn = 0 in

E ̂⊗πF , then
∑∞

n=1〈Sxn, yn〉 = 0 for all S ∈ B(E, F ∗) by Proposition A.2.11,
and hence, taking for S the operator defined by Sx = f(x)g for x ∈ E,
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∞
∑

n=1

Bxn,yn(f, g) = g

( ∞
∑

n=1

f(xn)yn

)

=
∞
∑

n=1

f(xn)g(yn) = 0

for all f ∈ E∗ and g ∈ F ∗. Thus we have a natural continuous linear mapping
u → Bu =

∑∞
n=1 Bxn,yn from E ̂⊗πF into the injective tensor product E ̂⊗εF .

This map is not injective in general, and the problem of when it is injective
is closely related to the approximation property of a Banach space. A Banach
space E has the approximation property if for each compact subset C of E and
each ε > 0, there exists a finite rank operator S on E with ‖Sx−x‖ ≤ ε for all
x ∈ C. The class of Banach spaces with the approximation property includes
all spaces C0(X) for X a locally compact Hausdorff space, all Banach spaces
with a Schauder basis, c0(I) and lp(I), 1 ≤ p < ∞, for any index set I, spaces
Lp(μ), 1 ≤ p < ∞, for any measure μ and the disc algebra. Also, if E∗ has
the approximation property, then so does E. The first example of a Banach
space which was shown to not have the approximation property, is B(l2, l2).
A very good reference to the approximation property and tensor products of
Banach spaces in general is [114].

Theorem A.2.12. For a Banach space E, the following two conditions are
equivalent.

(i) E has the approximation property.
(ii) The natural mapping from E ̂⊗πF into E ̂⊗εF is injective for every Ba-

nach space F .

A.3 Measure and integration

In the following, if μ is a positive measure on a set X , Lp(X, μ) or Lp(μ), for
short, denotes the set of (equivalence classes of) p-integrable complex-valued
μ-measurable functions on X .

Theorem A.3.1. (Hölder’s inequality) Let μ be a positive measure and let
1 ≤ p ≤ ∞, and (1/p) + (1/q) = 1. If f ∈ Lp(μ) and g ∈ Lq(μ), then
fg ∈ L1(μ) and

‖fg‖1 ≤ ‖f‖p‖g‖q.

Theorem A.3.2. (Minkowski’s inequality) Let μ be a positive measure, 1 ≤
p ≤ ∞, and f, g ∈ Lp(μ). Then f + g ∈ Lp(μ) and

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

It follows that Lp(μ) with the norm ‖ · ‖p is a Banach space, and L2(μ) is
a Hilbert space for the scalar product 〈f, g〉 =

∫

X
f(x)g(x)dμ(x).

A consequence of Hölder’s inequality is that every g ∈ Lq(μ) defines a
bounded linear functional Fg of Lp(μ) by
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〈Fg, f〉 =
∫

X

f(x)g(x)dμ(x)

for all f ∈ Lp(μ).

Theorem A.3.3. Let μ be a positive measure and suppose that either 1 < p <
∞ or that p = 1 and μ is σ-finite. Let q be the conjugate index to p. Then,
for each F ∈ Lp(μ)∗, there exists a unique g ∈ Lq(μ) such that F = Fg. The
map g → Fg is an isometric isomorphism from Lq(μ) onto Lp(μ)∗.

Theorem A.3.4. Let μ be a positive regular Borel measure on a locally com-
pact Hausdorff space X. Then, for 1 ≤ p < ∞, Cc(X) is dense in Lp(X, μ).

Theorem A.3.5. (Riesz representation theorem) Let X be a locally compact
Hausdorff space. For each μ ∈ M(X), define Fμ ∈ C0(X)∗ by

〈Fμ, f〉 =
∫

X

f(x)dμ(x), f ∈ C0(X).

Then the map μ → Fμ is an isometric isomorphism from M(X) onto C0(X)∗.

Let X and Y be locally compact Hausdorff spaces and let μ and ν be pos-
itive regular Borel measures on X and Y , respectively. Then the assignment

f →
∫

X

(∫

Y

f(x, y)dν(y)
)

dμ(x) =
∫

Y

(∫

X

f(x, y)dμ(x)
)

dν(y)

defines a positive linear functional F on Cc(X × Y ). Hence, by the Riesz
representation theorem, there exists a unique positive regular Borel measure,
denoted μ × ν, on X × Y such that

〈F, f〉 =
∫

X×Y

f(x, y)d(μ × ν)(x, y)

for all f ∈ Cc(X × Y ).

Theorem A.3.6. (Fubini’s theorem) Let X and Y be locally compact Haus-
dorff spaces and let μ and ν be positive regular Borel measures on X and Y ,
respectively. Let f ∈ L1(μ× ν) and suppose that there exist σ-finite Borel sets
A and B of X and Y , respectively, such that f vanishes on (X×Y )\ (A×B).
Then

∫

X

(∫

Y

f(x, y)dν(y)
)

dμ(x) =
∫

X×Y

f(x, y)d(μ × ν)(x, y)

=
∫

Y

(∫

X

f(x, y)dμ(x)
)

dν(y).



A.4 Haar measure and convolution on locally compact groups 327

We now briefly discuss vector-valued integration. Let (X, μ) be a measure
space and E a Banach space. A function f : X → E is said to be a μ-
measurable simple function if it is of the form f(x) =

∑n
j=1 1Mj (x)aj , where

the aj are elements of E, the Mj are disjoint μ-measurable subsets of X with
μ(Mj) < ∞ and 1Mj denotes the characteristic function of Mj, j = 1, . . . , n.
The integral

∫

X
f(x)dμ(x) of such a μ-measurable simple function is defined

to be the element
∑n

j=1 μ(Mj)aj of E. An arbitrary function f : X → E is
called μ-measurable if there exists a sequence of μ-measurable simple functions
converging to f almost everywhere. Such an f can then be defined to be
Bochner integrable if the scalar-valued function x → ‖f(x)‖ is integrable. In
this case, the Bochner integral of f is

∫

X

f(x)dμ(x) = lim
n→∞

∫

X

fn(x)dμ(x),

where (fn)n is any sequence of μ-measurable simple functions such that
∫

X

‖f(x) − fn(x)‖dμ(x) → 0.

The space of E-valued Bochner integrable functions is denoted L1(μ, E) or
L1(X, E), if the measure μ is understood.

A.4 Haar measure and convolution on locally compact
groups

A locally compact group G is always understood to be a group which is also
a locally compact Hausdorff space and for which the map (x, y) → xy−1 of
the product space G × G to G is continuous.

For a function f on G and x ∈ G, the left and right translation Lxf and
Rxf of f are defined by Lxf(y) = f(x−1y) and Rxf(y) = f(yx) for y ∈ G,
respectively. A nonzero positive regular Borel measure μ on G is called a left
Haar measure if it satisfies μ(xE) = μ(E) for all Borel sets E and all x ∈ G.
This left invariance condition is equivalent to

∫

G Lxf(y)dμ(y) =
∫

G f(y)dμ(y)
for all f ∈ L1(G, μ). Likewise, a right Haar measure is defined.

Theorem A.4.1. On any locally compact group G there exists a left invariant
(right invariant) Haar measure. If μ and λ are two left Haar measures on G,
then there exists a constant c > 0 such that μ = cλ.

If the Haar measure is fixed, we most times denote the Haar measure of a
set M by |M |.

Remark A.4.2. Let μ be a Haar measure on G.

(1) Then μ(U) > 0 for every nonempty open set and
∫

G
f(x)dx > 0 for each

f ∈ C+
c (G) which is not identically zero.
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(2) The support of μ equals G, and μ(G) < ∞ if and only if G is compact.

Example A.4.3. (1) On R (more generally R
n) Lebesgue measure is a Haar

measure.
(2) On any discrete group counting measure, that is, μ(f) =

∑

x∈G f(x)
is a left and right invariant Haar measure.

(3) On the circle group T a Haar measure is given by

μ(f) =
1
2π

∫ 2π

0

f(eit)dt,

f ∈ C(T), where dt is Lebesgue measure on [0, 2π].
(4) If G1 and G2 are two locally compact groups with left Haar measures

μ1 and μ2, respectively, then the product measure μ1 × μ2 is a left Haar
measure on the product group G1 × G2.

Let dx be a left Haar measure on G. For every x ∈ G the measure

f →
∫

G

f(yx−1)dy, f ∈ Cc(G),

is left invariant. So there is a unique positive number Δ(A) such that
∫

G

f(yx−1)dy = Δ(x)
∫

G

f(y)dy

for all f ∈ Cc(G). The function Δ : x → Δ(x) is a continuous homomorphism
from G into R

×
+, the multiplicative group of positive real numbers.

The function Δ is called the modular function of G and G is called uni-
modular if Δ(x) = 1 for all x ∈ G.

Abelian groups are unimodular, and so are compact groups because {1}
is the only compact subgroup of R

×
+.

Proposition A.4.4. Let 1 ≤ p < ∞ and let f ∈ Lp(G). Given ε > 0, there
exists a neighbourhood U of e in G such that ‖Lxf−Lyf‖p < ε for all x, y ∈ G
such that x−1y ∈ U .

Proof. Because Cc(G) is dense in Lp(G), we find g ∈ Cc(G) with ‖f − g‖p <
ε/3. Choose a compact neighbourhood V of e in G. Then 0 < |V ·supp g| < ∞
since V · supp g is compact and has nonempty interior. Since g is uniformly
continuous, there exists a symmetric neighbourhood U of e in G such that
U ⊆ V and

|g(x) − g(y)| <
ε

3
· |V · supp g|−1/p

for all x, y ∈ G with y−1x ∈ U . For such x and y, we have
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‖Lxg − Lyg‖p
p =

∫

G

|g(x−1t) − g(y−1t)|pdt

=
∫

V ·supp g

|g(x−1yt) − g(t)|pdt

≤
(

ε

3

)p

|V · supp g|−1|V · supp g| =

(

ε

3

)p

,

and this implies

‖Lxf − Lyf‖p ≤ ‖Lx(f − g)‖p + ‖Lxg − Lyg‖p + ‖Ly(f − g)‖p

= 2‖f − g‖p + ‖Lxg − Lyg‖p,

which, by the above and the choice of g, is < ε. �	

Proposition A.4.5. Let 1 < p < ∞ and let q be the conjugate index to p;
that is, (1/p) + (1/q) = 1. Suppose that f ∈ Lp(G) and g ∈ Lq(G). Then
f ∗ ǧ ∈ C0(G) and ‖f ∗ ǧ‖∞ ≤ ‖f‖p‖g‖q.

Proof. For each x ∈ G, we have
∫

G

|f(xy)ǧ(y−1)|dy =
∫

G

|Lx−1f(y)| · |g(y)|dy ≤ ‖Lx−1f‖p‖g‖q

by Hölder’s inequality. So f ∗ ǧ is defined everywhere and bounded on G by
‖f‖p‖g‖q. For x and y in G, Hölder’s inequality gives

|f ∗ ǧ(x) − f ∗ ǧ(y)| ≤ ‖Lx−1f − Ly−1f‖p‖g‖q.

The map t → Ltf from G into Lp(G) is continuous (Proposition A.4.4), and
therefore we obtain that f ∗ ǧ is continuous.

To prove that f ∗ ǧ vanishes at infinity, note first that f ∗ ǧ ∈ Cc(G)
whenever f, g ∈ Cc(G). If f ∈ Lp(G) and g ∈ Lq(G) then, since Cc(G) is
dense in Lr(G) for each 1 ≤ r < ∞, there exist sequences (fn)n and (gn)n in
Cc(G) such that ‖f − fn‖p → 0 and ‖g − gn‖q → 0. Then, for all x ∈ G,

|f ∗ ǧ(x) − fn ∗ ǧn(x)| ≤ |(f − fn) ∗ ǧ(x)| + |fn ∗ (ǧ − ǧn)(x)|
≤ ‖f − fn‖p‖g‖q + ‖fn‖p‖g − gn‖q,

which tends to 0 as n → ∞. It follows that f ∗ ǧ ∈ C0(G). �	

Proposition A.4.6. Let G be a locally compact group. For every relatively
compact symmetric open neighbourhood V of e in G, let uV ∈ L1(G) be such
that uV ≥ 0, ‖uV ‖1 = 1 and uV = 0 almost everywhere on G\V . Then, given
f ∈ Lp(G), 1 ≤ p < ∞, and ε > 0,

‖uV ∗ f − f‖p < ε

for all sufficiently small V .
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Proof. Since Cc(G) is dense in Lp(G), we can choose g ∈ Cc(G) such that
‖f − g‖p < ε/3. For g it follows that

‖uV ∗ g − g‖p
p =

∫

G

∣

∣

∣

∣

∣

∫

G

uV (xy)g(y−1)dy − g(x)

∣

∣

∣

∣

∣

p

dx

=
∫

G

∣

∣

∣

∣

∣

∫

G

uV (y)Lyg(x)dy − g(x)

∣

∣

∣

∣

∣

p

dx

=
∫

G

∣

∣

∣

∣

∣

∫

G

uV (y)[Lyg(x) − g(x)]dy

∣

∣

∣

∣

∣

p

dx

≤
∫

G

(

∫

G

uV (y)|Lyg(x) − g(x)|dy

)p

dx

≤ |V · supp g| · sup{‖Lyg − g‖p
∞ : y ∈ V }.

Now, since the map y → Lyg from G into Lp(G) is continuous, we find a
neighbourhood W of e in G such that, for all y ∈ W ,

‖Lyg − g‖∞ ≤ ε

3|V · supp g|1/p
.

Together with the above estimate we get for all V ⊆ W ,

‖uV ∗ f − f‖p ≤ ‖uV ∗ (f − g)‖p + ‖uV ∗ g − g‖p + ‖g − f‖p

≤ (‖uV ‖1 + 1)‖f − g‖p +
ε

3
,

which is < ε since ‖u‖1 = 1. �	

In Proposition A.4.6, uV can, for instance, be taken to be |V |−11V .

Proposition A.4.7. Suppose that 1 ≤ p ≤ ∞, g ∈ Lp(G), and f ∈ L1(G).
Then f ∗ g(x) is defined for almost all x ∈ G, and we have f ∗ g ∈ Lp(G) and
‖f ∗ g‖p ≤ ‖f‖1‖g‖p. If p = ∞, then f ∗ g(x) is defined for all x ∈ G and f ∗ g
is continuous.

Proof. Assume first that p = ∞. By Hölder’s inequality, the integral f ∗
g(x) =

∫

G f(xy)g(y−1)dy converges for every x ∈ G and satisfies |f ∗ g(x)| ≤
‖f‖1‖g‖∞. Moreover, for all x, y ∈ G,

|f ∗ g(x−1) − f ∗ g(y−1)| ≤
∫

G

|Lxf(t) − Lyf(t)| · |g(t−1)| dt

≤ ‖g‖∞‖Lxf − Lyf‖1.

Proposition A.4.4 shows that f ∗ g is continuous.
Now let 1 ≤ p < ∞ and let q be the conjugate exponent to p. Since

the map y → Lyg from G into Lp(G) is continuous (Proposition A.4.4) and
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bounded by ‖g‖p, the Lp-valued function y → f(y)Lyg is Bochner integrable
and satisfies, for each h ∈ Lq(G),

∫

G

(
∫

G

f(y)Lyg dy

)

(x)h(x)dx =
〈
∫

G

f(y)Lyg dy, h

〉

=
∫

G

f(y)〈Lyg, h〉dy

=
∫

G

∫

G

f(y)g(y−1x)h(x)dxdy.

It follows from Fubini’s theorem and Hölder’s inequality that the order of
integration can be reversed. Since h ∈ Lq(G) is arbitrary, we conclude that

(∫

G

f(y)Lyg

)

(x) =
∫

G

f(y)g(y−1x)dy = f ∗ g(x)

for almost all x ∈ G. Finally, using this, we get

‖f ∗ g‖p =
(∫

G

∣

∣

∣

∣

(∫

G

f(y)Lyg

)

(x)
∣

∣

∣

∣

p

dx

)1/p

=
∥

∥

∥

∥

∫

G

f(y)Lyg

∥

∥

∥

∥

p

≤
∫

G

‖f(y)Lyg‖p dy

=
∫

G

|f(y)| · ‖Lyg‖p dy

= ‖g‖p‖f‖1.

This finishes the proof of the proposition. �	

Let H be a closed normal subgroup of a locally compact group G. For
f ∈ Cc(G), define the function THf on G/H by THf(xH) =

∫

H
f(xh)dh,

x ∈ G. Then THf ∈ Cc(G/H) and TH maps Cc(G) onto Cc(G/H). Given a
left Haar integral on G/H , the assignment f →

∫

G/H
THf(xH)d(xH) defines

a left Haar integral on G. Hence there exists a unique left Haar measure dx
on G such that

∫

G/H

(∫

H

f(xh)dh

)

d(xH) =
∫

G

f(x)dx.

This formula is called Weil’s formula. If two of the left Haar integrals on G,
H and G/H are given, the third can always be normalized so that Weil’s
formula holds. It follows from Weil’s formula that TH(f ∗ g) = TH(f) ∗ TH(g)
and ‖THf‖1 ≤ ‖f‖1 for all f, g ∈ Cc(G). Hence TH extends to a continuous
homomorphism from L1(G) into L1(G/H), also denoted TH . Since ‖THf‖1

equals the quotient norm, TH is actually surjective.

Theorem A.4.8. Let H be a closed normal subgroup of G and let f ∈ L1(G).
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(i) There exists a set S of measure zero in G/H such that the function h →
f(xh) is in L1(H) for each x ∈ G with xH �∈ S.

(ii) The function xH →
∫

H f(xh)dh, which is defined on G/H \ S, is inte-
grable.

(iii) If left Haar measures on H, G/H, and G are chosen so that Weil’s for-
mula holds, then

∫

G/H

(∫

H

f(xh)dh

)

d(xH) =
∫

G

f(x)dx.

The formula in (iii) is often called the extended Weil formula. A function
f ∈ L1(G) is in the kernel of the homomorphism TH : L1(G) → L1(G/H) if
and only if

∫

H
f(xh)dh = 0 for almost all x ∈ G.

A.5 The Pontryagin duality theorem

The famous Pontryagin duality theorem asserts that there is a canonical topo-
logical isomorphism between a locally compact Abelian group and its second
dual group. In this section we deduce this duality theorem from the results
in Sections 4.4 and 2.7. In the sequel, G will always denote a locally compact
Abelian group and ̂G the dual group of G.

Proposition A.5.1. For x ∈ G, ε > 0, and a compact subset Γ of ̂G, let

V (x, Γ, ε) = {y ∈ G : |γ(y) − γ(x)| < ε for all γ ∈ Γ}.

Then V (x, Γ, ε) is open in G, and the sets V (x, Γ, ε) form a neighbourhood
basis of x in G.

Proof. Let (yα)α be a net in G\V (x, Γ, ε) converging to some y ∈ G. For each
α, there exists γα ∈ Γ with |γα(yα)− γα(x)| ≥ ε. Since Γ is compact, passing
to a subnet if necessary, we can assume that γα → γ for some γ ∈ Γ . Since
the function (t, λ) → λ(t) on G × ̂G is continuous (Lemma 2.7.4), it follows
that |γ(y) − γ(x)| ≥ ε. This shows that y �∈ V (x, Γ, ε). So V (x, Γ, ε) is open
in G.

Since V (x, Γ, ε) = xV (e, Γ, ε), it remains to show that if U is an open
neighbourhood of e in G, then there exist a compact subset Γ of ̂G and ε > 0
such that V (e, Γ, ε) ⊆ U . To that end, choose symmetric open neighbourhoods
V and W of e in G such that W ⊆ V , V 2 ⊆ U , W 2 ⊆ V and V is relatively
compact. Let

f = ‖1W ∗ 1W ‖−1
2 (1W ∗ 1W ).

Then f ∈ Cc(G), f(x) ≥ 0 for all x ∈ G and supp f ⊆ V . If x ∈ G \ U , then
supp f and supp(Lxf) are disjoint and therefore

‖f − Lxf‖2
2 = ‖f‖2

2 + ‖Lxf‖2
2.
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In particular, if x ∈ G is such that ‖f −Lxf‖2 ≤ 1, then x ∈ U . Now, choose
u ∈ L1(G) such that u ≥ 0, ‖u‖1 = 1 and ‖u ∗ f − f‖2 < 1/3 (Proposition
A.4.6). Since the ‖ · ‖2-norm is translation invariant, it follows that, for all
x ∈ G,

‖u ∗ Lxf − Lxf‖2 = ‖Lx(u ∗ f − f)‖2 = ‖u ∗ f − f‖2 < frac13.

Thus, if x ∈ G satisfies ‖u ∗ f − f‖2 ≤ 1/3, then

‖f − Lxf‖2 ≤ ‖f − u ∗ f‖2 + ‖u ∗ f − u ∗ Lxf‖2 + ‖u ∗ Lxf − f‖2 < 1,

and hence x ∈ U . Applying the regular representation (Section 4.4), we have

‖u ∗ f − u ∗ Lxf‖2 = ‖λuf − λLxuf‖2

≤ ‖λu − λLxu‖ · ‖f‖2

= ‖û − ̂Lxu‖∞.

So, if x ∈ G is such that ‖û − ̂Lxu‖∞ ≤ 1/3, then x ∈ U by the above.
Since û ∈ C0( ̂G), there exists a compact subset Γ of ̂G such that |û(γ)| <

1/6 for all γ ∈ ̂G \ Γ . Let x ∈ V (e, Γ, 1/3. Then, for γ ∈ Γ ,
∣

∣

∣û(γ) − ̂Lxu(γ)
∣

∣

∣ = |û(γ)| · |1 − γ(x)| ≤ ‖u‖1 · |1 − γ(x)| <
1
3

since ‖u‖1 = 1, and if γ ∈ ̂G \ Γ , then
∣

∣

∣û(γ) − ̂Lxu(γ)
∣

∣

∣ = |û(γ)| · |1 − γ(x)| <
1
3

as |û(γ)| < 1
6 . Therefore, if x ∈ V (e, Γ, 1

3 ), then

∣

∣

∣
û(γ) − ̂Lxu(γ)

∣

∣

∣
<

1
3

for all γ ∈ Γ , and this implies x ∈ U by what we have seen above. �	

Let ̂

̂G denote the second dual of G, that is, the dual group of ̂G. Each

x ∈ G defines an element x̂ of ̂̂G by setting x̂(α) = α(x) for α ∈ ̂G.

Theorem A.5.2. (Pontryagin duality theorem) Let G be a locally compact
Abelian group. The map ∧ : x → x̂ is a topological isomorphism from G onto

the second dual group ̂

̂G.

Proof. Clearly, ∧ is a homomorphism. If x and y are elements of G such that
x̂ = ŷ, then for all f ∈ L1(G) and α ∈ ̂G,

̂Lxf(α) = α(x) ̂f(α) = α(y) ̂f(α) = ̂Lyf(α).
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Since the Gelfand homomorphism of L1(G) is injective, it follows that Lxf =
Lyf for all f ∈ L1(G) and this implies x = y. Proposition A.5.1 shows that ∧
is a homeomorphism of G onto its range ∧(G) ⊆ ̂

̂G. In particular, ∧(G) is a
locally compact group. Since a locally compact subset of a Hausdorff space is
the intersection of an open set and a closed set, it follows that ∧(G) is open
in its closure ∧(G). Now, ∧(G) is a topological group and an open subgroup

of a topological group is automatically closed. So ∧(G) is closed in ̂

̂G.

Towards a contradiction, assume that ∧(G) �= ̂

̂G. Since L1( ̂G) is a regular
commutative Banach algebra, there exists g ∈ L1( ̂G), g �= 0, such that ĝ(x̂) =
0 for all x ∈ G. As g �= 0, we find h ∈ C0( ̂G) with

∫

̂G
g(α)h(α)dα �= 0. Now,

the Gelfand homomorphism maps C∗(G) onto C0( ̂G) (Section 4.4). Thus there
exists T ∈ C∗(G) with ̂T = h. Since L1(G) is dense in C∗(G) and Cc(G) is
dense in L1(G) in the ‖ · ‖1-norm and hence in the C∗-norm, there exists
f ∈ Cc(G) with

∫

̂G

g(α) ̂f(α)dα =
∫

̂G

g(α)̂λf (α)dα �= 0.

Fubini’s theorem yields

∫

̂G

g(α) ̂f (α)dα =
∫

̂G

g(α)

(

∫

G

f(x)α(x)dx

)

dα

=
∫

G

f(x)

(

∫

̂G

g(α)α(x)dα

)

dx

=
∫

G

f(x)

(

∫

̂G

g(α)x̂(α)dα

)

dx

=
∫

G

f(x)ĝ(x̂)dx,

which is zero since ĝ vanishes on ∧(G). This contradiction shows that ∧ is
surjective and finishes the proof of the duality theorem. �	

For any subset Γ of ̂G, let A(G, Γ ) denote the annihilator of Γ in G, that
is,

A(G, Γ ) = {x ∈ G : γ(x) = 1 for all γ ∈ Γ}.

Similarly, the annihilator of a subset M of G is defined to be

A( ̂G, M) = {α ∈ ̂G : α(x) = 1 for all x ∈ M}.

Clearly, A(G, Γ ) is a closed subgroup of G and A( ̂G, M) is a closed subgroup
of ̂G.
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Corollary A.5.3. Suppose that Γ is a closed subgroup of ̂G. Then

Γ = {α ∈ ̂G : α(A(G, Γ )) = {1}}.

Proof. The subgroup Γ of ̂G identifies canonically with a closed subgroup of
(G/A(G, Γ ))∧ which separates the points of G/A(G, Γ ). Therefore, we can
assume that A(G, Γ ) = {e}.

Since Δ(L1( ̂G/Γ )) = ̂̂
G/Γ , it suffices to show that if α is a character of

̂G with α|Γ = 1, then α = 1
̂G. By the duality theorem, there exists x ∈ G

such that α = x̂. Then γ(x) = α(x) = 1 for all γ ∈ Γ and hence x = e by
hypothesis. So α = 1 on all of G. �	

It follows from the preceding corollary that the map Γ → A(G, Γ ) is a
bijection between the closed subgroups of G and the closed subgroups of ̂G.

Corollary A.5.4. Let G be a locally compact Abelian group. If μ ∈ M(G)
and

μ̂(α) =
∫

G

α(x)dμ(x) = 0

for all α ∈ ̂G, then μ = 0.

Proof. If f ∈ L1( ̂G), then ̂f ∈ C0(
̂

̂G) and hence, since x → x̂ is a homeomor-

phism from G to ̂

̂G, the function x → ̂f(x̂) belongs to C0(G). By Fubini’s
theorem,

∫

G

̂f(x̂)dμ(x) =
∫

G

(

∫

̂G

f(α)x̂(α)dα

)

dμ(x)

=
∫

̂G

f(α)

(

∫

G

α(x)dμ(x)

)

dα

=
∫

̂G

f(α)μ̂(α)dα,

whence
∫

G
̂f(x̂)dμ(x) = 0 for all f ∈ L1( ̂G). Thus, denoting by ν the image

of μ under the homeomorphism x → x̂,
∫

̂

̂G

̂f(χ)dν(χ) = 0

for all f ∈ L1( ̂G).
However, the image of L1( ̂G) under the Gelfand homomorphism is norm-

dense in C0(
̂

̂G) (Lemma 2.7.3(iii)). It follows that
∫

̂

̂G
g(χ)dν(χ) = 0 for all

g ∈ C0(
̂

̂G) and this implies ν = 0 and hence μ = 0. �	
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In passing we recall the notion of a compactly generated topological group.
For a subset M of G and n ∈ N, let Mn denote the set of all n-fold products
x1x2 · . . . · xn of elements xj of M . Suppose that G is a topological group.
Then G is said to be compactly generated if there exists a compact subset C of
G such that G =

⋃∞
n=1 Cn. If C is any compact symmetric neighbourhood of

the identity of G, then
⋃∞

n=1 Cn is an open compactly generated subgroup of
G. Conversely, every compactly generated open subgroup of G arises in this
manner.

Clearly, R and Z are compactly generated, and so is the direct product of
two compactly generated topological groups. In particular, groups of the form
R

n × Z
m × K, where n, m ∈ N0 and K is a compact group, are compactly

generated. The following structure theorem, for the proof of which we refer
to the literature, says that within the class of locally compact Abelian groups
these groups are the only compactly generated ones.

Theorem A.5.5. Let G be a compactly generated locally compact Abelian
group. Then G is topologically isomorphic to a direct product R

n × Z
m × K,

where n, m ∈ N0 and K is a compact Abelian group.

A.6 The coset ring of an Abelian group

Let G be a locally compact Abelian group. In Section 5.6 we have described
explicitly the closed ideals in L1(G) with bounded approximate identities. As
an essential tool we have used a characterisation of the closed sets in the coset
ring of an Abelian topological group. This characterisation, Theorem A.6.9
below, was established by Gilbert [43] and, independently and with a much
simpler proof, by Schreiber [117]. Accordingly, our presentation follows very
closely the one of [117]. Schreiber’s approach, in turn, is based on a result due
to Cohen [22] (Proposition A.6.5). We start with the relevant definitions.

The coset ring of an Abelian group G, denoted R(G), is the smallest
Boolean algebra of subsets of G containing the cosets of all subgroups of G.
That is, R(G) is the smallest family of subsets of G which contains all the
cosets of subgroups of G and which is closed under the processes of forming
finite unions, finite intersections and complements.

Suppose now that G is a topological Abelian group. Then the closed coset
ring of G, Rc(G), is defined to be

Rc(G) = {E ∈ R(G) : E is closed in G}.

We start with a description of the sets in R(G).

Proposition A.6.1. Let G be an Abelian group. A subset E of G belongs to
R(G) if and only if E is of the form

E =
n
⋃

i=1

(

Ci \
ni
⋃

j=1

Cij

)

, n, ni ∈ N,



A.6 The coset ring of an Abelian group 337

where Ci and Cij are (possibly void) cosets of subgroups of G.

Proof. Let E denote the collection of all such sets E. By definition of R(G)
and since E is closed under forming finite unions, it suffices to show that if
E, F ∈ E , then E ∩ F ∈ E and E \ F ∈ E . Let E be as above and let

F =
m
⋃

k=1

(

Dk \
mk
⋃

l=1

Dkl

)

, m, mk ∈ N,

where Dk and Dkl are cosets of subgroups of G (or empty). Since

E ∩ F =
n
⋃

i=1

m
⋃

k=1

ni
⋂

j=1

mk
⋂

l=1

((Ci \ Cij) ∩ (Dk \ Dkl)),

it will follow that E∩F ∈ E once we have shown that if C, C′, D, D′ are cosets
in G, then (C \C′)∩ (D \D′) ∈ E . However, for that we only have to observe
that

(C \ C′) ∩ (D \ D′) = (C ∩ D) \ (C′ ∪ D′)

and that C ∩D is either empty or a coset. Turning to complements, note that

(C \ C′) \ (D \ D′) = (C \ (C′ ∪ D)) ∪ ((C ∩ D′) \ C′)

belongs to E . Finally, with the above notation, we have

E \ F =
n
⋃

i=1

m
⋂

k=1

(

ni
⋂

j=1

mk
⋃

l=1

((Ci \ Cij) \ (Dk \ Dkl))

)

.

Because E is closed under forming finite unions and intersections, we conclude
that E \ F ∈ E . �	

Remark A.6.2. Let H and K be subgroups of G and a, b ∈ G such that
aH ∩ bK �= ∅. Then there exists h ∈ H such that

aH \ bK = ah(H \ (H ∩ K)),

and H ∩K has infinite index in H whenever aH \ bK is infinite. Thus Propo-
sition A.6.1 can be reformulated as follows. A subset E of G belongs to R(G)
if and only if E can be written as

E = F ∪
m
⋃

i=1

(

aiHi \
mi
⋃

j=1

bijKij

)

,

where F is finite, Hi is a subgroup of G and Kij is a subgroup of infinite index
in Hi, 1 ≤ i ≤ m, 1 ≤ j ≤ mi.

The following lemma is used to show that homomorphisms map coset rings
into coset rings (Theorem A.6.6).
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Lemma A.6.3. Let G be an Abelian group, H a subgroup of G, and K1, . . . ,
Kn cosets in G. Then the set

E = {x ∈ G : xH ⊆ K1 ∪ . . . ∪ Kn}

belongs to R(G).

Proof. We prove this by induction on n ∈ N. If n = 1, then either E = ∅ or
some coset of H is contained in K1. In the latter case, since K1 is a coset, E
is a coset and hence E ∈ R(G).

Assume the statement is true for n and let

E = {x ∈ G : xH ⊆ K1 ∪ . . . ∪ Kn+1}.

If E �= ∅ then, replacing E by a suitable translate, we can assume that H ⊆
K1 ∪ . . . ∪ Kn+1. Set Hi = H ∩ Ki and let Ki be a coset of the subgroup Gi

of G (i = 1, . . . , n + 1). Since xH =
⋃n+1

i=1 xHi for all x ∈ G, we have

E =
n+1
⋂

i=1

{x ∈ G : xHi ⊆ K1 ∪ . . . ∪ Kn+1}

=
n+1
⋂

i=1

(

{

x ∈ G : xHi ⊆ Ki

}

⋃

{

x ∈ G : xHi ⊆
⋃

j �=i

Kj

})

=
n+1
⋂

i=1

(

Gi ∪
{

x ∈ G : xHi ⊆
⋃

j �=i

Kj

})

,

which belongs to R(G) by the induction hypothesis. �	

Let F(G) be the space of all finite linear combinations of characteristic
functions 1A, where A is a coset of a subgroup of G. Observe the following
simple facts.

(1) The intersection of two cosets is a coset.
(2) 1A∩B = 1A1B.
(3) 1A∪B = 1A + 1B − 1A1B.
(4) 1G\A = 1G − 1A.

It follows from (1), (2) and (3) that F(G) is an algebra of functions on G.
The next proposition is shown in [22]. For sake of brevity, we refrain from

giving the proof. As pointed out by Schreiber, the following corollary is actu-
ally equivalent to Proposition A.6.4.

Proposition A.6.4. Let f ∈ F(G), and let B1, . . . , Br be the finite family of
sets in G on which f takes on its different values. Then the Boolean algebra
generated by B1, . . . , Br and all of their translates contains a finite collec-
tion {K1, . . . , Ks} of cosets in G such that the Boolean algebra generated by
{K1, . . . , Ks} contains every Bk.
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Corollary A.6.5. Let E ∈ R(G). Then the Boolean algebra generated by E
and all of its translates contains a finite collection {K1, . . . , Kr} of cosets in
G such that the Boolean algebra generated by {K1, . . . , Kr} contains E.

Proof. Recall that E can be written as a finite union of finite intersections
of sets of the form K \ L, where K and L are cosets and L may be empty
(Proposition A.6.1). The characteristic function of K\L is equal to 1K−1K∩L.
Since these functions are in F(G) and F(G) is an algebra, we have 1E ∈ F(G).
Now, the sets of constancy of 1E are just E and G \E, so that the statement
follows. �	

Even though we need the following theorem only in the special case where
G∗ is a quotient group of G and φ the quotient homomorphism, we present it
in slightly more generality.

Theorem A.6.6. Let G and G∗ be Abelian groups and let φ : G → G∗ be a
homomorphism. If E ∈ R(G), then φ(E) ∈ R(G∗).

Proof. Because φ preserves unions and translations we only need to consider
sets of the form E = H \

⋃n
i=1 Ki, where H is a subgroup of G and K1, . . . , Kn

are cosets in H of subgroups of H .
Let N = kerφ and let q : H → H/(H∩N) be the quotient homomorphism.

Then there is an injective homomorphism j : H/(H ∩ N) → G∗ such that
φ|H = j ◦ q. We show that q(E) ∈ R(H/(H ∩ N)). Since j is an injective
homomorphism, it then follows that φ(E) = j(q(E)) ∈ R(G∗).

Therefore it suffices to show that if G is an Abelian group, H is a subgroup
of G and K1, . . . , Kn are cosets in G then, with q : G → G/H the quotient
homomorphism,

q

(

G \
n
⋃

i=1

Ki

)

∈ R(G/H).

This is equivalent to showing that the complement

F = {ξ ∈ G/H : q−1(ξ) ⊆ K1 ∪ . . . ∪ Kn}

belongs to R(G/H). Let

E = {x ∈ G : q(x) ∈ K1 ∪ . . . ∪ Kn}.

Then q(E) = F and E ∈ R(G) by Lemma A.6.3. We show that this implies
that q(E) ∈ R(G/H).

If E �= ∅, then E is a union of cosets of H , and the same is true of
every member of the Boolean algebra A generated by E and all its translates.
By Corollary A.6.5, A contains a finite collection C of cosets such that the
Boolean algebra B generated by C contains E. The quotient homomorphism
q induces a Boolean algebra homomorphism on A, and hence on B. It follows
that q(E) ∈ R(G/H). This finishes the proof. �	
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Lemma A.6.7. Let G be an Abelian topological group and G0 a dense sub-
group of G. Suppose that K1, . . . , Kn are cosets in G0 and let E = G0 \
⋃n

i=1 Ki. Then there exists an open subgroup H of G such that E is a union
of cosets of H.

Proof. Let Ki be a coset of the subgroup Gi, i = 1, . . . , n. Let S denote the
smallest (and necessarily finite) collection of subgroups of G which contains
all Gi, i = 0, 1, . . . , n, and is closed under forming intersections. Since G0 is
dense in G and G0 ∈ S, there exists K ∈ S which is minimal with respect to
the property that K is open G. Then there is a (possibly void) subset I of
{1, . . . , n} such that

(1) K = G0 ∩
(
⋂

i∈I Gi

)

.
(2) i ∈ F and Gi = Gj implies j ∈ I.

Set H = K, and let C be any coset of H . We have to show that either
C ∩ E = ∅ or C ⊆ E. To that end, suppose that x ∈ C ∩ E (equivalently,
C ∩ E �= ∅ since C is open in G). Then xK is a dense subset of C = xH. Let
Li = Ki ∩ xK, i = 1, . . . , n. We claim that even

xK \
n
⋃

i=1

Ki = xK \
n
⋃

i=1

Li

is dense in C. Since xK is dense in C, it suffices to verify that
⋃n

i=1 Li is
nowhere dense in G. If i ∈ I then K is a subgroup of Gi. Thus Li = ∅ since
xK �⊆ Ki. If i �∈ I then Li is either void or a coset of K ∩ Gi. By the choice
of K and I, K ∩ Gi is not open, so K ∩ Gi is nowhere dense and hence so is
Li. Since x ∈ G0 and K ⊆ G0, it follows that

C =

(

xK \
n
⋃

i=1

Ki

)

⊆
(

G0 \
n
⋃

i=1

Ki

)

= E,

as was to be shown. �	

The preceding lemmas now lead to the characterisation of closed sets in
the coset ring at which we were aiming.

Theorem A.6.8. Let G be an Abelian topological group and E ∈ R(G). Then
E ∈ R(G) and E is closed if and only if E can be written

E =
m
⋃

j=1

(

Cj \
mj
⋃

l=1

Cjl

)

,

where Cj and Cjl are (possibly void) closed cosets in G and Cjl is contained
in Cj and open in Cj .
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Proof. Clearly, a set E of the above form is closed and an element of R(G).
Conversely, let E ∈ R(G) and suppose first that E is of the form E = G0 \
⋃n

l=1 Kl, where G0 is a subgroup of G and the Kl are cosets contained in G0.
By Lemma 5.6.13 there exists an open subgroup H of G0 such that E is a
union of cosets of H . If q : G0 → G0/H is the quotient homomorphism then,
by Lemma 5.6.12, q(E) ∈ R(G0/H), say

q(E) =
m
⋃

j=1

(

Dj \
mj
⋃

l=1

Djl

)

,

where the Dj and Djl are cosets in G0/H (Lemma 5.6.9). Moreover, q(E) =
q(E) since q is continuous and G0/H is discrete. Thus

E = q−1(q(E)) = q−1(q(E)) =
m
⋃

j=1

(

q−1(Dj) \
mj
⋃

l=1

q−1(Djl)

)

,

and each q−1(Djl) and q−1(Dj) is open in G0. This proves that E ∈ R(G).
Now let E be an arbitrary set in R(G). Then E = E1 ∪ . . . ∪ Em, where

each Ei is a translate of a set of the type considered above. It follows that
E = E1 ∪ . . . ∪ Em ∈ R(G) and E has the desired form. �	
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Topologie in die Menge der maximalen Ideale eines normierten Ringes, Mt. Sb.
9 (1941), 25-39.

43. J.E. Gilbert, On projections of L∞(G) onto translation-invariant subspaces,
Proc. London Math. Soc. 19 (1969), 69-88.



References 345

44. A.M. Gleason, A characterization of maximal ideals, J. Analyse Math. 18
(1967), 171-172.

45. C.C. Graham, The Fourier transform is onto only when the group is finite,
Proc. Amer. Math. Soc. 38 (1973), 365-366.

46. C.C. Graham and O.C. McGehee, Essays in commutative harmonic analysis,
Springer, Berlin-Heidelberg-New York, 1979.

47. R.C. Gunning and H. Rossi, Analytic functions of several complex variables,
Prentice Hall, Englewood Cliffs, NJ, 1965.

48. A. Hausner, Ideals in a certain Banach algebra, Proc. Amer. Math. Soc. 8
(1957), 246-249.

49. A. Hausner, The Tauberian theorem for groups algebras of vector-valued func-
tions, Pacific J. Math. 7 (1957), 1603-1610.

50. H. Helson, Spectral synthesis of bounded functions, Ark. Mat. 1 (1952), 497-502.
51. C.S. Herz, Spectral synthesis for the circle, Ann. Math. 68 (1958), 709-712.
52. C.S. Herz, The spectral theory of bounded functions, Trans. Amer. Math. Soc.

94 (1960), 181-232.
53. C.S. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23

(1973), 91-123.
54. E. Hewitt and K.A. Ross, Abstract harmonic analysis. I, Springer, Berlin-

Heidelberg-New York, 1963.
55. E. Hewitt and K.A. Ross, Abstract harmonic analysis. II, Springer, Berlin-

Heidelberg-New York, 1970.
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